Opposition-based learning grey wolf optimizer for global optimization

被引:104
|
作者
Yu, Xiaobing [1 ,2 ,3 ]
Xu, WangYing [2 ,3 ]
Li, ChenLiang [2 ,3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Minist Educ, Key Lab Meteorol Disaster KLME, Nanjing, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Peoples R China
关键词
Heuristic algorithm; Grey wolf optimizer; Opposition-based learning; Optimization; ALGORITHM;
D O I
10.1016/j.knosys.2021.107139
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Grey wolf optimizer is a novel swarm intelligent algorithm. It has received lots of interest from the heuristic algorithm community for its superior optimization capacity and few parameters. However, it is also easy to trap into the local optimum when solving complex and multimodal functions. In order to boost the performance of GWO, an opposition-based learning grey wolf optimizer (OGWO) is proposed. The opposition-based learning approach is incorporated into GWO with a jumping rate, which can help the algorithm jump out of the local optimum and not increase the computational complexity. What is more, the coefficient.a is dynamically adjusted by the nonlinear function to balance exploration and exploitation. The serial experiments have revealed that the proposed algorithm is superior to the conventional heuristic algorithms, it is also better than GWO and its variants. (C) 2021 Published by Elsevier B.V.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Random Opposition-Based Learning Grey Wolf Optimizer
    Long, Wen
    Jiao, Jianjun
    Liang, Ximing
    Cai, Shaohong
    Xu, Ming
    IEEE ACCESS, 2019, 7 : 113810 - 113825
  • [2] Improved Grey Wolf Optimizer Based on Opposition-Based Learning
    Gupta, Shubham
    Deep, Kusum
    SOFT COMPUTING FOR PROBLEM SOLVING, 2019, 817 : 327 - 338
  • [3] Enhanced opposition-based grey wolf optimizer for global optimization and engineering design problems
    Chandran, Vanisree
    Mohapatra, Prabhujit
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 76 : 429 - 467
  • [4] An opposition-based chaotic Grey Wolf Optimizer for global optimisation tasks
    Gupta, Shubham
    Deep, Kusum
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2019, 31 (05) : 751 - 779
  • [5] Opposition-Based Multi-Tiered Grey Wolf Optimizer for Stochastic Global Optimization Paradigms
    Bahl, Vasudha
    Bhola, Anoop
    INTERNATIONAL JOURNAL OF ENERGY OPTIMIZATION AND ENGINEERING, 2022, 11 (01)
  • [6] Ameliorated grey wolf optimizer with the best and worst orthogonal opposition-based learning
    Shuidong Ma
    Yiming Fang
    Xiaodong Zhao
    Le Liu
    Soft Computing, 2024, 28 : 2941 - 2965
  • [7] Ameliorated grey wolf optimizer with the best and worst orthogonal opposition-based learning
    Ma, Shuidong
    Fang, Yiming
    Zhao, Xiaodong
    Liu, Le
    SOFT COMPUTING, 2024, 28 (04) : 2941 - 2965
  • [8] Hybrid Harmony Search Algorithm With Grey Wolf Optimizer and Modified Opposition-Based Learning
    Alomoush, Alaa A.
    Alsewari, Abdulrahman A.
    Alamri, Hammoudeh S.
    Aloufi, Khalid
    Zamli, Kamal Z.
    IEEE ACCESS, 2019, 7 : 68764 - 68785
  • [9] Enhancing Global Optimization through the Integration of Multiverse Optimizer with Opposition-Based Learning
    Pham, Vu Hong Son
    Dang, Nghiep Trinh Nguyen
    Nguyen, Van Nam
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2024, 2024
  • [10] An Efficient Grey Wolf Optimizer with Opposition-Based Learning and Chaotic Local Search for Integer and Mixed-Integer Optimization Problems
    Shubham Gupta
    Kusum Deep
    Arabian Journal for Science and Engineering, 2019, 44 : 7277 - 7296