共 50 条
Regulation of function by dimerization through the amino-terminal membrane-spanning domain of human ABCC1/MRP1
被引:44
|作者:
Yang, Youyun
Liu, Yang
Dong, Zizheng
Xu, Junkang
Peng, Hui
Liu, Zhaoqian
Zhang, Jian-Ting
机构:
[1] Indiana Univ, Sch Med, Dept Pharmacol & Toxicol, Ctr Canc, Indianapolis, IN 46202 USA
[2] Indiana Univ, Sch Med, Walther Canc Inst, Walther Oncol Ctr, Indianapolis, IN 46202 USA
关键词:
D O I:
10.1074/jbc.M700152200
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Overexpression of some ATP-binding cassette (ABC) membrane transporters such as ABCB1/P-glycoprotein/MDR1 and ABCC1/MRP1 causes multidrug resistance in cancer chemotherapy. It has been thought that half-ABC transporters with one nucleotide-binding domain and one membrane-spanning domain (MSD) likely work as dimers, whereas full-length transporters with two nucleotide-binding domains and two or three MSDs function as monomers. In this study, we examined the oligomeric status of the human full-length ABC transporter ABCC1/MRP1 using several biochemical approaches. We found 1) that it is a homodimer, 2) that the dimerization domain is located in the amino-terminal MSD0L0 (where L0 is loop 0) region, and 3) that MSD0L0 has a dominant-negative function when coexpressed with wild-type ABCC1/MRP1. These findings suggest that ABCC1/MRP1 may exist and function as a dimer and that MSD0L0 likely plays some structural and regulatory functions. It is also tempting to propose that the MSD0L0-mediated dimerization may be targeted for therapeutic development to sensitize ABCC1/MRP1-mediated drug resistance in cancer chemotherapy.
引用
收藏
页码:8821 / 8830
页数:10
相关论文