Global italian domination in graphs

被引:16
|
作者
Hao, Guoliang [1 ]
Hu, Kangxiu [1 ]
Wei, Shouliu [2 ]
Xu, Zhijun [1 ]
机构
[1] East China Univ Technol, Coll Sci, Nanchang 330013, Jiangxi, Peoples R China
[2] Minjiang Univ, Coll Math & Data Sci, Fuzhou 350121, Fujian, Peoples R China
关键词
Italian dominating function; Italian domination number; global Italian dominating function; global Italian domination number;
D O I
10.2989/16073606.2018.1506831
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An Italian dominating function (IDF) on a graph G = (V, E) is a function f: V ? {0, 1, 2} satisfying the condition that for every vertex v ? V (G) with f (v) = 0, either v is adjacent to a vertex assigned 2 under f, or v is adjacent to at least two vertices assigned 1. The weight of an IDF f is the value ?(v?V)((G)) f (v). The Italian domination number of a graph G, denoted by ?(I) (G), is the minimum weight of an IDF on G. An IDF f on G is called a global Italian dominating function (GIDF) on G if f is also an IDF on the complement G? of G. The global Italian domination number of G, denoted by ?(gI) (G), is the minimum weight of a GIDF on G. In this paper, we initiate the study of the global Italian domination number and we present some strict bounds for the global Italian domination number. In particular, we prove that for any tree T of order n ? 4, ?(gI) (T) ? ?(I) (T) + 2 and we characterize all trees with ?(gI) (T) = ?(I) (T) + 2 and ?(gI) (T) = ?(I) (T) + 1.
引用
收藏
页码:1101 / 1115
页数:15
相关论文
共 50 条
  • [1] Italian domination and perfect Italian domination on Sierpinski graphs
    Varghese, Jismy
    Anu, V
    Lakshmanan, S. Aparna
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2021, 24 (07): : 1885 - 1894
  • [2] On perfect Italian domination in graphs
    Paleta, Leonard M.
    Jamil, Ferdinand P.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
  • [3] STARRED ITALIAN DOMINATION IN GRAPHS
    Cabrera Martinez, Abel
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2021, 16 (03) : 139 - 152
  • [4] Secure Italian domination in graphs
    M. Dettlaff
    M. Lemańska
    J. A. Rodríguez-Velázquez
    Journal of Combinatorial Optimization, 2021, 41 : 56 - 72
  • [5] Restrained Italian domination in graphs
    Samadi, Babak
    Alishahi, Morteza
    Masoumi, Iman
    Mojdeh, Doost Ali
    RAIRO-OPERATIONS RESEARCH, 2021, 55 (02) : 319 - 332
  • [6] Secure Italian domination in graphs
    Dettlaff, M.
    Lemanska, M.
    Rodriguez-Velazquez, J. A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 41 (01) : 56 - 72
  • [7] Hop Italian domination in graphs
    Canoy, Sergio R.
    Jamil, Ferdinand P.
    Menchavez, Sheila M.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (04): : 2431 - 2449
  • [8] On the signed Italian domination of graphs
    Karamzadeh, Ashraf
    Maimani, Hamid Reza
    Zaeembashi, Ali
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2019, 27 (02) : 204 - 229
  • [9] Covering Italian domination in graphs
    Khodkar, Abdollah
    Mojdeh, Doost Ali
    Samadi, Babak
    Yero, Ismael G.
    Discrete Applied Mathematics, 2021, 304 : 324 - 331
  • [10] Convex Italian Domination in Graphs
    Canoy Jr, Sergio r.
    Jamil, Ferdinand P.
    Fortosa, Rona jane G.
    KYUNGPOOK MATHEMATICAL JOURNAL, 2025, 65 (01): : 149 - 167