Estimating surface normals in noisy point cloud data

被引:377
|
作者
Mitra, NJ [1 ]
Nguyen, A [1 ]
Guibas, L [1 ]
机构
[1] Stanford Graph Lab, James H Clark Ctr, Stanford, CA 94305 USA
关键词
normal estimation; noisy point cloud data; Eigen analysis; neighborhood size estimation;
D O I
10.1142/S0218195904001470
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we describe and analyze a method based on local least square fitting for estimating the normals at all sample points of a point cloud data (PCD) set, in the presence of noise. We study the effects of neighborhood size, curvature, sampling density, and noise on the normal estimation when the PCD is sampled from a smooth curve in R-2 or a smooth surface in R-3, and noise is added. The analysis allows us to find the optimal neighborhood size using other local information from the PCD. Experimental results are also provided.
引用
下载
收藏
页码:261 / 276
页数:16
相关论文
共 50 条
  • [1] Visibility of noisy point cloud data
    Mehra, Ravish
    Tripathi, Pushkar
    Sheffer, Alla
    Mitra, Niloy J.
    COMPUTERS & GRAPHICS-UK, 2010, 34 (03): : 219 - 230
  • [2] Dealing with Noisy Data on Point Cloud Models
    Lin, Yi-Peng
    Hsu, Kuo-Wei
    2014 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2014, : 255 - 258
  • [3] Estimating curvatures and the Darboux frame from unorganised noisy point cloud
    Liu, Yu
    Yin, ZhouPing
    Xiong, YouLun
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2008, 33 (1-2): : 137 - 152
  • [4] Guided Filter Simplification Method for Noisy Point Cloud Data
    Zhu, Rui
    Ma, Shan
    Xu, Degang
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 6951 - 6955
  • [5] Data fusion of surface normals and point coordinates for deflectometric measurements
    Komander, B.
    Lorenz, D.
    Fischer, M.
    Petz, M.
    Tutsch, R.
    JOURNAL OF SENSORS AND SENSOR SYSTEMS, 2014, 3 (02) : 281 - 290
  • [6] Airfoil profile reconstruction from unorganized noisy point cloud data
    Ghorbani, Hamid
    Khameneifar, Farbod
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2021, 8 (02) : 740 - 755
  • [7] A Robust and Fast Reconstruction Framework for Noisy and Large Point Cloud Data
    Feng, Xiang
    Yu, Xiaoqing
    Wan, Wanggen
    Pfaender, Fabien
    Alfredo Sanchez, J.
    2014 14TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND GRID COMPUTING (CCGRID), 2014, : 828 - 836
  • [8] Detection of utility poles from noisy Point Cloud Data in Urban environments
    Ferrin, Alex
    Larrea, Julio
    Realpe, Miguel
    Ochoa, Daniel
    PROCEEDINGS OF 2018 ARTIFICIAL INTELLIGENCE AND CLOUD COMPUTING CONFERENCE (AICCC 2018), 2018, : 53 - 57
  • [9] A FULLY DATA-DRIVEN METHOD FOR ESTIMATING THE SHAPE OF A POINT CLOUD
    Rodriguez-Casal, A.
    Saavedra-Nieves, P.
    ESAIM-PROBABILITY AND STATISTICS, 2016, 20 : 332 - 348
  • [10] Robust Point Cloud Segmentation With Noisy Annotations
    Ye, Shuquan
    Chen, Dongdong
    Han, Songfang
    Liao, Jing
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) : 7696 - 7710