A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem

被引:86
|
作者
Cirak, F [1 ]
Ramm, E [1 ]
机构
[1] Univ Stuttgart, Inst Struct Mech, D-70550 Stuttgart, Germany
关键词
D O I
10.1016/S0045-7825(97)00220-X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The reciprocal theorem of Betti and Rayleigh or in other notions duality arguments are used to derive error estimators for the finite element approximation of various quantities, including local variables like single displacements and stresses. The proposed error estimator is evaluated solving the set of equations for an additional right-hand side, simply applying the energy norm error estimators two times. Furthermore, a general h-adaptive algorithm is introduced which allows us to optimize meshes with respect to different user specified variables. The efficiency of the current approach is demonstrated for plate and shell examples. (C) 1998 Elsevier Science S.A.
引用
收藏
页码:351 / 362
页数:12
相关论文
共 50 条
  • [1] A posteriori error estimation and adaptivity for elastoplasticity using the reciprocal theorem
    Cirak, F
    Ramm, E
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 47 (1-3) : 379 - 393
  • [2] A posteriori error estimation and adaptivity for elastoplasticity using the reciprocal theorem
    Cirak, Fehmi
    Ramm, Ekkehard
    International Journal for Numerical Methods in Engineering, 2000, 47 (01) : 379 - 393
  • [3] A posteriori error estimation of quantities of interest for the linear elasticity problems
    Korotov, S.
    International E-Conference on Computer Science 2005, 2005, 2 : 88 - 91
  • [4] A Posteriori Error Estimation for Planar Linear Elasticity by Stress Reconstruction
    Bertrand, Fleurianne
    Moldenhauer, Marcel
    Starke, Gerhard
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2019, 19 (03) : 663 - 679
  • [5] Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity
    Bertrand, Fleurianne
    Kober, Bernhard
    Moldenhauer, Marcel
    Starke, Gerhard
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (04) : 2783 - 2802
  • [6] A posteriori error estimation and adaptivity in hp virtual elements
    da Veiga, L. Beirao
    Manzini, G.
    Mascotto, L.
    NUMERISCHE MATHEMATIK, 2019, 143 (01) : 139 - 175
  • [7] A posteriori error estimation and adaptivity for degenerate parabolic problems
    Nochetto, RH
    Schmidt, A
    Verdi, C
    MATHEMATICS OF COMPUTATION, 2000, 69 (229) : 1 - 24
  • [8] A posteriori error estimation and adaptivity in hp virtual elements
    L. Beirão da Veiga
    G. Manzini
    L. Mascotto
    Numerische Mathematik, 2019, 143 : 139 - 175
  • [9] ROBUST A POSTERIORI ERROR ESTIMATION FOR PARAMETER-DEPENDENT LINEAR ELASTICITY EQUATIONS
    Khan, Arbaz
    Bespalov, Alex
    Powell, Catherine E.
    Silvester, David J.
    MATHEMATICS OF COMPUTATION, 2021, 90 (328) : 613 - 636
  • [10] Variational multiscale a posteriori error estimation for systems. Application to linear elasticity
    Hauke, Guillermo
    Irisarri, Diego
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 285 : 291 - 314