Gauge symmetry origin of Backlund transformations for Painleve equations

被引:3
|
作者
Alves, V. C. C. [1 ]
Aratyn, H. [2 ]
Gomes, J. F. [1 ]
Zimerman, A. H. [1 ]
机构
[1] Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, Brazil
[2] Univ Illinois, Dept Phys, 845 W Taylor St Chicago, Chicago, IL 60607 USA
关键词
integrability; Painleve equations; Backlund symmetries; dressing chain; TODA; CHAINS; HIERARCHIES;
D O I
10.1088/1751-8121/abf2ee
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We identify the self-similarity limit of the second flow of sl(N) mKdV hierarchy with the periodic dressing chain thus establishing a connection to A(N-1)((1)) invariant Painleve equations. The A(N-1)((1)) Backlund symmetries of dressing equations and Painleve equations are obtained in the self-similarity limit of gauge transformations of the mKdV hierarchy realized as zero-curvature equations on the loop algebra (sl) over cap (N) endowed with a principal gradation.
引用
收藏
页数:22
相关论文
共 50 条