Low-temperature chemical synthesis of intermetallic TiFe nanoparticles for hydrogen absorption

被引:20
|
作者
Kobayashi, Yasukazu [1 ]
Yamaoka, Shohei [2 ]
Yamaguchi, Shunta [2 ]
Hanada, Nobuko [2 ]
Tada, Shohei [3 ]
Kikuchi, Ryuji [4 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Interdisciplinary Res Ctr Catalyt Chem, Cent 5,1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan
[2] Waseda Univ, Dept Appl Chem, Shinjuku Ku, 3-4-1 Okubo, Tokyo 1698555, Japan
[3] Ibaraki Univ, Dept Mat Sci & Engn, 4-12-1 Nakanarusawacho, Hitachi, Ibaraki 3168511, Japan
[4] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
关键词
Intermetallic TiFe; Chemical synthesis; Calcium hydride; Nanoparticles; Hydrogen absorption; ELECTROCHEMICAL REDUCTION; COMBUSTION SYNTHESIS; ILMENITE; FETI; FERROTITANIUM; OXIDE; POWDERS;
D O I
10.1016/j.ijhydene.2021.04.083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanosizing of TiFe hydrogen storage alloy is conducted to facilitate its activation. Here, pure intermetallic TiFe nanoparticles (45 nm) were prepared using chemical reduction of oxide precursors at 600 degrees C, which is the lowest temperature ever used in chemical synthesis. This was achieved using a strong reducing agent (CaH2) in a molten LiCl. When used for hydrogen absorption, the obtained nanoparticles surprisingly exhibited almost no hydrogen absorption. The results demonstrated that TiFe nanoparticles are more difficult to activate than the bulk powder because the oxidized surface layers of the nanoparticles become stabilized, which prevents the morphological change necessary for their activation. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:22611 / 22617
页数:7
相关论文
共 50 条
  • [1] HYDROGEN ABSORPTION OF TIFE INTERMETALLIC COMPOUNDS
    EGORUSHKIN, VE
    ZHURNAL FIZICHESKOI KHIMII, 1982, 56 (09): : 2302 - 2304
  • [2] Low-temperature chemical routes to intermetallic compounds
    Schaak, Raymond E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [3] Refinement of the Microwave-Assisted Polyol Process for the Low-Temperature Synthesis of Intermetallic Nanoparticles
    Teichert, Johannes
    Heise, Martin
    Chang, Jen-Hui
    Ruck, Michael
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2017, (42) : 4930 - 4938
  • [4] Low-Temperature Synthesis of GeTe Nanoparticles
    Bouska, Marek
    Milasheuskaya, Yaraslava
    Slouf, Miroslav
    Knotek, Petr
    Pechev, Stanislav
    Prokes, Lubomir
    Pecinka, Lukas
    Havel, Josef
    Novak, Miroslav
    Jambor, Roman
    Nemec, Petr
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (61)
  • [5] Low-temperature Synthesis of Maghemite Nanoparticles
    Kartsonakis, I
    Papadopoulos, N.
    Tserotas, Ph
    Svec, P.
    MATERIALS AND APPLICATIONS FOR SENSORS AND TRANSDUCERS II, 2013, 543 : 468 - +
  • [6] Hydrogen Absorption/Desorption Behavior of a Cold-Rolled TiFe Intermetallic Compound
    Oliveira, Verona Biancardi
    Goncalves Beatrice, Cesar Augusto
    Leal Neto, Ricardo Mendes
    Silva, Wagner Batista
    Pessan, Luiz Antonio
    Botta, Walter Jose
    Leiva, Daniel Rodrigo
    MATERIALS RESEARCH-IBERO-AMERICAN JOURNAL OF MATERIALS, 2021, 24 (06):
  • [7] Spectroscopic study of low-temperature hydrogen absorption in palladium
    Ienaga, K.
    Takata, H.
    Onishi, Y.
    Inagaki, Y.
    Tsujii, H.
    Kimura, T.
    Kawae, T.
    APPLIED PHYSICS LETTERS, 2015, 106 (02)
  • [8] CORRELATION OF LOW-TEMPERATURE CALORIC AND MAGNETIC EFFECTS IN TIFE
    SCHRODER, K
    CHENG, CH
    JOURNAL OF APPLIED PHYSICS, 1960, 31 (12) : 2154 - 2155
  • [9] Synthesis of shaped intermetallic nanoframes through the low-temperature annealing of core-sandwich-shell nanoparticles
    Williams, Benjamin
    Young, Allison
    Andoni, Ilektra
    Golden, Matthew
    Tsung, Chia-Kuang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [10] Low-Temperature Synthesis of Titanium Oxynitride Nanoparticles
    Jansen, Felicitas
    Hoffmann, Andreas
    Henkel, Johanna
    Rahimi, Khosrow
    Caumanns, Tobias
    Kuehne, Alexander J. C.
    NANOMATERIALS, 2021, 11 (04)