REGION: Relevant Entropy Graph spatIO-temporal convolutional Network for Pedestrian Trajectory Prediction

被引:0
|
作者
Wang, Naiyao [1 ]
Wang, Yukun [1 ]
Zhou, Changdong [1 ]
Abraham, Ajith [2 ]
Liu, Hongbo [1 ]
机构
[1] Dalian Maritime Univ, Coll Informat Sci & Technol, Dalian, Liaoning, Peoples R China
[2] Machine Intelligence Res Labs MIR Labs, Auburn, WA USA
基金
中国国家自然科学基金;
关键词
Graph convolution; Relevant entropy; Gating mechanism; Trajectory prediction;
D O I
10.1007/978-3-030-96299-9_15
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modeling pedestrian interaction is an essential building block in pedestrian trajectory prediction, which raises various challenges such as the complexity of social behavior and the randomness of motion. In this paper, a new relevant entropy spatio-temporal graph convolutional network is proposed to model pedestrian interaction for pedestrian trajectory prediction, which contains regional spatiotemporal graph convolutional neural network and gated dilation causal convolutional neural network. The regional spatio-temporal graph convolutional neural network creates a matching graph structure for each time step, and calculates the weighted adjacency matrix of each graph structure through relevant entropy to obtain the sequence embedding representation of the pedestrian interaction relationship. The gated dilation causal convolutional neural network reduces the linear superposition of the hidden layer through the setting of the dilated factor, and uses the gating mechanism to filter the features. Experiments are carried out on the standard data sets ETH and UCY, higher accuracy and efficiency verify that the proposed method is effective in pedestrian interaction modeling.
引用
收藏
页码:150 / 159
页数:10
相关论文
共 50 条
  • [1] Channel spatio-temporal convolutional network for pedestrian trajectory prediction
    Lu, Zhonghao
    Luo, Yonglong
    Xu, Lina
    Hu, Ying
    Zheng, Xiaoyao
    Sun, Liping
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (11) : 5395 - 5413
  • [2] PTP-STGCN: Pedestrian Trajectory Prediction Based on a Spatio-temporal Graph Convolutional Neural Network
    Jing Lian
    Weiwei Ren
    Linhui Li
    Yafu Zhou
    Bin Zhou
    Applied Intelligence, 2023, 53 : 2862 - 2878
  • [3] PTP-STGCN: Pedestrian Trajectory Prediction Based on a Spatio-temporal Graph Convolutional Neural Network
    Lian, Jing
    Ren, Weiwei
    Li, Linhui
    Zhou, Yafu
    Zhou, Bin
    APPLIED INTELLIGENCE, 2023, 53 (03) : 2862 - 2878
  • [4] STAGP: Spatio-Temporal Adaptive Graph Pooling Network for Pedestrian Trajectory Prediction
    Liu, Zhening
    He, Li
    Yuan, Liang
    Lv, Kai
    Zhong, Runhao
    Chen, Yaohua
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (03) : 2001 - 2007
  • [5] Channel Spatio-Temporal Convolutional Network for Trajectory Prediction
    Lu, Zhonghao
    Xu, Lina
    Hu, Ying
    Sun, Liping
    Luo, Yonglong
    UBIQUITOUS SECURITY, UBISEC 2023, 2024, 2034 : 205 - 218
  • [6] MSTCNN: multi-modal spatio-temporal convolutional neural network for pedestrian trajectory prediction
    Haifeng Sang
    Wangxing Chen
    Haifeng Wang
    Jinyu Wang
    Multimedia Tools and Applications, 2024, 83 : 8533 - 8550
  • [7] MSTCNN: multi-modal spatio-temporal convolutional neural network for pedestrian trajectory prediction
    Sang, Haifeng
    Chen, Wangxing
    Wang, Haifeng
    Wang, Jinyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 8533 - 8550
  • [8] D-STGCN: Dynamic Pedestrian Trajectory Prediction Using Spatio-Temporal Graph Convolutional Networks
    Sighencea, Bogdan Ilie
    Stanciu, Ion Rares
    Caleanu, Catalin Daniel
    ELECTRONICS, 2023, 12 (03)
  • [9] Scene Spatio-Temporal Graph Convolutional Network for Pedestrian Intention Estimation
    Naik, Abhilash Y.
    Bighashdel, Ariyan
    Jancura, Pavol
    Dubbelman, Gijs
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 874 - 881
  • [10] Pedestrian Trajectory Prediction Based on Improved Social Spatio-Temporal Graph Convolution Neural Network
    Yang, Jikun
    Han, Chao
    2022 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND NATURAL LANGUAGE PROCESSING, MLNLP 2022, 2022, : 63 - 67