Adaptive LASSO estimation for ARDL models with GARCH innovations

被引:5
|
作者
Medeiros, Marcelo C. [1 ]
Mendes, Eduardo F. [2 ]
机构
[1] Pontifical Catholic Univ Rio de Janeiro, Dept Econ, Rua Marques de Sao Vicente 225, BR-22451900 Rio De Janeiro, RJ, Brazil
[2] Fundacao Getulio Vargas, Sch Appl Math, Rio De Janeiro, Brazil
关键词
adaLASSO; ARDL; GARCH; LASSO; shrinkage; sparse models; time series; TIME-SERIES MODELS; ORACLE PROPERTIES; SELECTION;
D O I
10.1080/07474938.2017.1307319
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we show the validity of the adaptive least absolute shrinkage and selection operator (LASSO) procedure in estimating stationary autoregressive distributed lag(p,q) models with innovations in a broad class of conditionally heteroskedastic models. We show that the adaptive LASSO selects the relevant variables with probability converging to one and that the estimator is oracle efficient, meaning that its distribution converges to the same distribution of the oracle-assisted least squares, i.e., the least square estimator calculated as if we knew the set of relevant variables beforehand. Finally, we show that the LASSO estimator can be used to construct the initial weights. The performance of the method in finite samples is illustrated using Monte Carlo simulation.
引用
收藏
页码:622 / 637
页数:16
相关论文
共 50 条
  • [1] Adaptive LASSO for linear regression models with ARMA-GARCH errors
    Yoon, Young Joo
    Lee, Sooyong
    Lee, Taewook
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (05) : 3479 - 3490
  • [2] RCA models with GARCH innovations
    Thavaneswaran, A.
    Appadoo, S. S.
    Ghahramani, M.
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (01) : 110 - 114
  • [3] Semiparametric efficient adaptive estimation of asymmetric GARCH models
    Sun, Yiguo
    Stengos, Thanasis
    [J]. JOURNAL OF ECONOMETRICS, 2006, 133 (01) : 373 - 386
  • [4] On adaptive estimation in nonstationary ARMA models with Garch errors
    Ling, SQ
    McAleer, M
    [J]. ANNALS OF STATISTICS, 2003, 31 (02): : 642 - 674
  • [5] Doubly stochastic models with GARCH innovations
    Peiris, S.
    Thavaneswaran, A.
    Appadoo, S.
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1768 - 1773
  • [6] ESTIMATION OF SPARSE FUNCTIONAL ADDITIVE MODELS WITH ADAPTIVE GROUP LASSO
    Sang, Peijun
    Wang, Liangliang
    Cao, Jiguo
    [J]. STATISTICA SINICA, 2020, 30 (03) : 1191 - 1211
  • [7] Adaptive LASSO estimation for functional hidden dynamic geostatistical models
    Maranzano, Paolo
    Otto, Philipp
    Fasso, Alessandro
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2023, 37 (09) : 3615 - 3637
  • [8] Correction: Adaptive LASSO estimation for functional hidden dynamic geostatistical models
    Paolo Maranzano
    Philipp Otto
    Alessandro Fassò
    [J]. Stochastic Environmental Research and Risk Assessment, 2023, 37 : 3675 - 3675
  • [9] Estimation of Error Variance in Regularized Regression Models via Adaptive Lasso
    Wang, Xin
    Kong, Lingchen
    Wang, Liqun
    [J]. MATHEMATICS, 2022, 10 (11)
  • [10] GARCH option pricing models with Meixner innovations
    Matthias R. Fengler
    Alexander Melnikov
    [J]. Review of Derivatives Research, 2018, 21 : 277 - 305