ZnO-ZnFe2O4/Fe3O4/Carbon Nanocomposites for Ultrasensitive and Selective Dopamine Detection

被引:16
|
作者
Appiah-Ntiamoah, Richard [1 ]
Baye, Anteneh Fufa [1 ]
Kim, Hern [1 ]
机构
[1] Myongji Univ, Dept Energy Sci & Technol, Environm Waste Recycle Inst, Yongin 17058, Gyeonggido, South Korea
基金
新加坡国家研究基金会;
关键词
ferrite@dye nanofibers; in situ carbothermal reduction; dopamine; electrochemical sensor; redox mediator; charge-transfer kinetics; adsorption; N-DOPED CARBON; ELECTROCHEMICAL DETECTION; ASCORBIC-ACID; CONGO RED; OXIDE; ADSORPTION; REDUCTION; SENSOR; NANOSTRUCTURES; NANOPARTICLES;
D O I
10.1021/acsanm.1c04222
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrochemical detection of submicromolar levels of dopamine (DA) by iron-carbon-based redox mediators requires the capacity, and fast electron-transfer kinetics. Its absence in most reported mediators has led to detection limits that are well above the lower threshold [DA] in healthy humans (i.e., 0.01 mu M). Herein, we report a ZnO- ZnFe2O4/Fe3O4/carbon nanocomposite, which possesses the aforementioned synergy and therefore displays impressive sensing capabilities. ZnO- ZnFe2O4/Fe3O4/carbon is synthesized in situ via the carbothermal reduction of Congo red (CR)-decorated ZnO-ZnFe2O4 nanofibers. This synthesis approach allows CR-derived CO(g) to consume the lattice oxygen at the edges of ZnFe2O4 and generate oxygen vacancy (OV)-rich-Fe3O4/ ZnO interfaces embedded in mesoporous graphitic carbon. Differences in work function cause interfacial electron transfer from Fe3O4 to ZnO, which improves the Fe2+ <-> Fe3+ redox chemistry and increases the charge-carrier concentration and electron-transfer rate. Meanwhile, the lattice vacancies and surface polarization increase the surface energy, which improves DA adsorption. Benefiting from these physicochemical advantages, a nafion/ZnO-ZnFe2O4/Fe3O4/carbon-modified glassy carbon electrode (GCE) displays a low detection limit of 1.57 nM, a high sensitivity of 2.7186 AM-1 cm-2, and a rapid response time of 13 s. Crucially, it selectively detects DA in the presence of 100 times more ascorbic acid, uric acid, urea, and potassium chloride and similar levels of serotonin. In addition, it is stable, reproducible, and active in biological fluids. These properties put nafion/ZnO-ZnFe2O4/Fe3O4/carbon/GCE on the same pedestal as the current state-of-the-art and could therefore potentially be used for the practical diagnosis of DA-related diseases in biomedical applications. Therefore, our results demonstrate that the in situ carbothermic synthesis of Fe3O4 from organicdye-decorated zinc ferrite nanofiber is a useful method for improving its electrocatalytic properties. This knowledge could potentially be applied to the synthesis of an electrocatalyst for other electrochemical applications.
引用
收藏
页码:4754 / 4766
页数:13
相关论文
共 50 条
  • [1] Synthesis and lithium electrode application of ZnO-ZnFe2O4 nanocomposites and porously assembled ZnFe2O4 nanoparticles
    Woo, Myong A.
    Kim, Tae Woo
    Kim, In Young
    Hwang, Seong-Ju
    SOLID STATE IONICS, 2011, 182 (01) : 91 - 97
  • [2] Facile synthesis of highly ordered mesoporous Fe3O4 with ultrasensitive detection of dopamine
    Huang, Yarong
    Zhang, Yongzhao
    Liu, Dandan
    Li, Menggang
    Yu, Yongsheng
    Yang, Weiwei
    Li, Haibo
    TALANTA, 2019, 201 : 511 - 518
  • [3] Enhancing photocatalytic performance of Fe3O4 nanoparticles and Fe3O4@ZnO nanocomposites
    Anjali, Aarti
    Gupta, Aarti
    Tripathi, Babita
    Sahni, Mohit
    Sharma, Kuldeep
    Ranjan, Nishant
    Yahya, M. Z. A.
    Noor, I. M.
    Pandit, Soumya
    IONICS, 2024, 30 (12) : 8267 - 8279
  • [4] Effect of the ZnFe2O4 shell in Fe3O4 on the properties of its nanocomposites with P3HT
    Fuentes-Perez, M.
    Acevedo-Pena, P.
    Ramirez-Gomez, M. A.
    Alanis-Navarro, J. A.
    Nicho, M. E.
    SYNTHETIC METALS, 2023, 299
  • [5] Electrochemical sensor for the detection of dopamine in real samples using polyaniline/NiO, ZnO, and Fe3O4 nanocomposites on glassy carbon electrode
    Fayemi, Omolola E.
    Adekunle, Abolanle S.
    Swamy, B. E. Kumara
    Ebenso, Eno E.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 818 : 236 - 249
  • [6] Properties of nanocomposites of α-Fe and Fe3O4
    Brahma, P
    Banerjee, S
    Das, D
    Mukhopadhyay, PK
    Chatterjee, S
    Nigam, AK
    Chakravorty, D
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 246 (1-2) : 162 - 168
  • [7] Magnetic and optical properties of synthesized ZnO-ZnFe2O4 nanocomposites via calcined Zn-Fe layered double hydroxide
    Ahmed, Abdullah Ahmed Ali
    Abdulwahab, A. M.
    Talib, Zainal Abidin
    Salah, Dina
    Flaifel, Moayad Hussein
    OPTICAL MATERIALS, 2020, 108
  • [8] Physical and magnetic properties of biosynthesized ZnO/Fe2O3, ZnO/ZnFe2O4, and ZnFe2O4 nanoparticles
    Noukelag, Sandrine Kamdoum
    Cummings, Franscious
    Arendse, Christopher J.
    Maaza, Malik
    RESULTS IN SURFACES AND INTERFACES, 2023, 10
  • [9] Comparison of the Solubility of ZnFe2O4, Fe3O4 and Fe2O3 in High Temperature Water
    Shenghan Zhang
    Rongxue Shi
    Yu Tan
    Journal of Solution Chemistry, 2018, 47 : 1112 - 1126
  • [10] Comparison of the Solubility of ZnFe2O4, Fe3O4 and Fe2O3 in High Temperature Water
    Zhang, Shenghan
    Shi, Rongxue
    Tan, Yu
    JOURNAL OF SOLUTION CHEMISTRY, 2018, 47 (06) : 1112 - 1126