Denoising Hyperspectral Images Using Spectral Domain Statistics

被引:0
|
作者
Lam, Antony [1 ]
Sato, Imari [1 ]
Sato, Yoichi [2 ]
机构
[1] Natl Inst Informat, Digital Content & Media Sci Res Div, Koganei, Tokyo, Japan
[2] Univ Tokyo, Inst Ind Sci, Tokyo, Japan
关键词
LINEAR-MODELS; SURFACE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral imaging has proven useful in a diverse range of applications in agriculture, diagnostic medicine, and surveillance to name a few. However, conventional hyperspectral images (HSIs) tend to be noisy due to limited light in individual bands; thus making denoising necessary. Previous methods for HSI denoising have viewed the entire HSI as a general 3D volume or focused on processing the spatial domain. However, past findings suggest that spectral distributions exhibit less variation than spatial patterns. Hence it would be fruitful to take specific advantage of the more predictable behavior of spectral domain data for denoising. In this paper, we present a two-stage denoising framework that first emphasizes denoising in the spectral domain and then uses spatial information to further improve spectral domain denoising. Our results indicate that specifically leveraging the spectral domain for denoising can provide state-of-the-art performance even from a relatively simple approach.
引用
收藏
页码:477 / 480
页数:4
相关论文
共 50 条
  • [1] Least Square Denoising in Spectral Domain for Hyperspectral Images
    Jayaprakash, Chippy
    Jacob, Naveen Varghese
    Renu, R. K.
    Sowmya, V
    Soman, K. P.
    [J]. 7TH INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATIONS (ICACC-2017), 2017, 115 : 399 - 406
  • [2] Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods
    Zhang, Chu
    Zhou, Lei
    Zhao, Yiying
    Zhu, Susu
    Liu, Fei
    He, Yong
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 203
  • [3] Hyperspectral Imagery Denoising Using a Spatial-Spectral Domain Mixing Prior
    Chen, Shao-Lin
    Hu, Xi-Yuan
    Peng, Si-Long
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2012, 27 (04) : 851 - 861
  • [4] Hyperspectral Imagery Denoising Using a Spatial-Spectral Domain Mixing Prior
    Shao-Lin Chen
    Xi-Yuan Hu
    Si-Long Peng
    [J]. Journal of Computer Science and Technology, 2012, 27 : 851 - 861
  • [5] Hyperspectral Imagery Denoising Using a Spatial-Spectral Domain Mixing Prior
    陈绍林
    胡晰远
    彭思龙
    [J]. Journal of Computer Science & Technology, 2012, 27 (04) : 851 - 861
  • [6] Hyperspectral Image Denoising Using First Order Spectral Roughness Penalty in Wavelet Domain
    Rasti, Behnood
    Sveinsson, Johannes R.
    Ulfarsson, Magnus Orn
    Benediktsson, Jon Atli
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2458 - 2467
  • [7] DENOISING HYPERSPECTRAL IMAGES USING INTERBAND CORRELATION
    Takehisa, Shuhei
    Okuda, Masahiro
    [J]. 2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 1395 - 1399
  • [8] Multi-scale MAP denoising of SAR and SAS images - Denoising terrestrial and underwater images using statistics in the wavelets domain
    Isar, Alexandru
    Isar, Dorina
    Quinquis, Andre
    [J]. SEA TECHNOLOGY, 2007, 48 (02) : 46 - 48
  • [9] Spectral Object Recognition in Hyperspectral Holography with Complex-Domain Denoising
    Shevkunov, Igor
    Katkovnik, Vladimir
    Claus, Daniel
    Pedrini, Giancarlo
    Petrov, Nikolay V.
    Egiazarian, Karen
    [J]. SENSORS, 2019, 19 (23)
  • [10] Hyperspectral complex domain denoising
    Katkovnik, Vladimir
    Shevkunov, Igor
    Egiazarian, Karen
    [J]. 2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,