A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes

被引:436
|
作者
Zhao, Yi [1 ]
Wang, Luyuan Paul [1 ,2 ]
Sougrati, Moulay Tahar [3 ]
Feng, Zhenxing [4 ]
Leconte, Yann [5 ]
Fisher, Adrian [6 ]
Srinivasan, Madhavi [1 ,2 ]
Xu, Zhichuan [1 ,2 ,7 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Interdisciplinary Grad Sch, ERI N, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Univ Montpellier 2, Inst Charles Gerhardt Montpellier, UMR CNRS 5253, ALISTORE European Res Inst CNRS 3104, F-34095 Montpellier, France
[4] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA
[5] CEA, IRAMIS, UMR NIMBE 3685, F-91191 Gif Sur Yvette, France
[6] Univ Cambridge, Dept Chem Engn, Cambridge CB2 3RA, England
[7] Nanyang Technol Univ, Solar Fuels Lab, 50 Nanyang Ave, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
REDUCED GRAPHENE OXIDE; ONE-POT SYNTHESIS; NITROGEN-DOPED GRAPHENE; SUPERIOR LITHIUM STORAGE; ENHANCED ELECTROCHEMICAL PERFORMANCE; TRANSMISSION ELECTRON-MICROSCOPY; ORDERED MESOPOROUS CARBON; IN-SITU OBSERVATION; BINDER-FREE ANODES; COATED SNO2/GRAPHENE NANOSHEETS;
D O I
10.1002/aenm.201601424
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon-oxide and carbon-sulfide nanocomposites have attracted tremendous interest as the anode materials for Li and Na ion batteries. Such composites are fascinating as they often show synergistic effect compared to their singular components. Carbon nanomaterials are often used as the matrix due to their high conductivity, tensile strength, and chemical stability under the battery condition. Metal oxides and sulfides are often used as active material fillers because of their large capacity. Numerous works have shown that by taking one step further into fabricating nanocomposites with rational structure design, much better performance can be achieved. The present review aims to present and discuss the development of carbon-based nanocomposite anodes in both Li ion batteries and Na ion batteries. The authors introduce the individual components in the composites, i.e., carbon matrices (e.g., carbon nanotube, graphene) and metal oxides/sulfides; followed by evaluating how advanced nanostructures benefit from the synergistic effect when put together. Particular attention is placed on strategies employed in fabricating such composites, with examples such as yolk-shell structure, layered-by-layered structure, and composite comprising one or more carbon matrices. Lastly, the authors conclude by highlighting challenges that still persist and their perspective on how to further develop the technologies.
引用
收藏
页数:70
相关论文
共 50 条
  • [1] Transition metal oxides for high performance sodium ion battery anodes
    Jiang, Yinzhu
    Hu, Meijuan
    Zhang, Dan
    Yuan, Tianzhi
    Sun, Wenping
    Xu, Ben
    Yan, Mi
    NANO ENERGY, 2014, 5 : 60 - 66
  • [2] Sn-based metal oxides and sulfides anode materials for Na ion battery
    Tomboc, Gracita M.
    Wang, Yunting
    Wang, Heryn
    Li, Jinghong
    Lee, Kwangyeol
    ENERGY STORAGE MATERIALS, 2021, 39 : 21 - 44
  • [3] Porous structured Si-based nanocomposites as high performance Li-ion battery anodes
    Li, Xiaolin
    Gu, Meng
    Kennard, Rhiannon
    Hu, Shenyang
    Chen, Xilin
    Wang, Chongmin
    Sailor, Michael
    Liu, Jun
    Zhang, Ji-Guang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [4] Porous polyhedral carbon matrix for high-performance Li/Na/K-ion battery anodes
    Vinoth Ganesan
    Young-Han Lee
    Heechul Jung
    Cheol-Min Park
    Carbon Letters, 2023, 33 : 2189 - 2198
  • [5] Porous polyhedral carbon matrix for high-performance Li/Na/K-ion battery anodes
    Ganesan, Vinoth
    Lee, Young-Han
    Jung, Heechul
    Park, Cheol-Min
    CARBON LETTERS, 2023, 33 (07) : 2189 - 2198
  • [6] A hierarchical hybrid design for high performance tin based Li-ion battery anodes
    Song, Xuefeng
    NANOTECHNOLOGY, 2013, 24 (20)
  • [7] A Comprehensive Review on Metal-Oxide Nanocomposites for High-Performance Lithium-Ion Battery Anodes
    Chen, Yao
    Chen, Xueye
    Zhang, Yaolong
    ENERGY & FUELS, 2021, 35 (08) : 6420 - 6442
  • [8] Robust Polyhedral CoTe2-C Nanocomposites as High-Performance Li- and Na-Ion Battery Anodes
    Ganesan, Vinoth
    Nam, Ki-Hun
    Park, Cheol-Min
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (05) : 4877 - 4887
  • [9] SnO2-CuO/graphene nanocomposites for high performance Li-ion battery anodes
    Zhao Jun
    Shan WanFei
    Xia XinBei
    Wang Qi
    Xing LiLi
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2014, 57 (06) : 1081 - 1084
  • [10] Silicon oxycarbide-antimony nanocomposites for high-performance Li-ion battery anodes
    Dubey, Romain J-C
    Sasikumar, Pradeep Vallachira Warriam
    Cerboni, Noemi
    Aebli, Marcel
    Krumeich, Frank
    Blugan, Gurdial
    Kravchyk, Kostiantyn, V
    Graule, Thomas
    Kovalenko, Maksym, V
    NANOSCALE, 2020, 12 (25) : 13540 - 13547