Thermographic reconstruction of heat load on the first wall of Wendelstein 7-X due to ECRH shine-through power

被引:1
|
作者
Corre, Y. [1 ]
Gaspar, J. [2 ]
Marsen, S. [3 ]
Moseev, D. [3 ]
Stange, T. [3 ]
Boscary, J. [4 ]
Drewelow, P. [3 ]
Gao, Y. [3 ]
Jakubowski, M. [3 ]
Hillairet, J. [1 ]
Laqua, H. P. [3 ]
Lechte, C. [5 ]
Moncada, V [1 ]
Niemann, H. [3 ]
Preynas, M. [6 ]
Sitjes, A. Puig [3 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
[2] Aix Marseille Univ, CNRS, IUSTI UMR 7343, F-13013 Marseille, France
[3] Max Planck Inst Plasma Phys, Teilinst Greifswald, Wendelsteinstr 1, D-17491 Greifswald, Germany
[4] Max Planck Inst Plasma Phys, Boltzmannstr 1, D-85748 Garching, Germany
[5] Univ Stuttgart, Inst Interfacial Proc Engn & Plasma Technol, Stuttgart, Germany
[6] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
关键词
IR thermography; heat flux calculation; electron cyclotron resonance heating; ECRH shine through emission;
D O I
10.1088/1741-4326/abebea
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electron cyclotron resonance heating (ECRH) is a powerful and flexible plasma heating technique that serves as the main heater at Wendelstein 7-X (W7-X) and will be used at ITER for start-up, heating, current drive and mitigation of plasma instabilities. In the case of poor or degraded microwave absorption, which is expected in the O2-mode heating scenario, a significant part of the beam directly hits the wall, leading to local overheating and potential damage. The ECRH shine-through power is mostly reflected onto the targets; only a small fraction is really absorbed through ohmic losses (typically 3% for graphite at 140 GHz). The ohmic losses do not only depend on the material properties and the frequency, but also on the polarization of the wave and the angle of incidence. This paper presents a thermographic analysis of ECRH experiments at W7-X, including heat load and temperature simulations of the first wall that include ECRH shine through. Two O-mode ECRH experiments with both a high temperature rise of the first wall and different angles of beam incidence on the wall's surface are depicted. One experiment has 775 kW of power modulation (5 Hz) with mixed polarization (45% O-mode, 55% X-mode) and an EC beam angle almost normal to the first wall. The second has 550 kW of steady EC power with O-mode polarization, a shallow beam angle and increased power absorption by the material. It is shown that infrared thermography is a useful tool for measuring shine-through power and protecting wall components.
引用
收藏
页数:15
相关论文
共 16 条
  • [1] The ECRH-Power Upgrade at the Wendelstein 7-X Stellarator
    Laqua, H. P.
    Avramidis, K. A.
    Braune, H.
    Chelis, I.
    Gantenbein, G.
    Illy, S.
    Ioannidis, Z.
    Jelonnek, J.
    Jin, J.
    Krier, L.
    Lechte, C.
    Leggieri, A.
    Legrand, F.
    Marsen, S.
    Moseev, D.
    Oosterbeek, H.
    Rzesnicki, T.
    Ruess, T.
    Stange, T.
    Thumm, M.
    Tigelis, I.
    Wolf, R. C.
    21ST JOINT WORKSHOP ON ELECTRON CYCLOTRON EMISSION AND ELECTRON CYCLOTRON RESONANCE HEATING, EC21, 2023, 277
  • [2] First results from protective ECRH diagnostics for Wendelstein 7-X
    Marsen, S.
    Corre, Y.
    Laqua, H. P.
    Moncada, V.
    Moseev, D.
    Niemann, H.
    Preynas, M.
    Stange, T.
    NUCLEAR FUSION, 2017, 57 (08)
  • [3] A SCENARIO OF PULSED ECRH WALL CONDITIONING IN HYDROGEN FOR THE WENDELSTEIN 7-X HELIAS
    Moiseenko, V. E.
    Beletskii, A. A.
    Shapoval, A. M.
    Wauters, T.
    Goriaev, A.
    Brunner, K. J.
    Buttenschoen, B.
    Drewelow, P.
    Winters, V.
    Brakel, R.
    Dinklage, A.
    Brezinsek, S.
    Stange, T.
    Laqua, H.
    Lazersson, S.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2019, (01): : 37 - 40
  • [4] Identification of fast ion wall loads in Wendelstein 7-X from thermographic measurements
    Cornelissen, Mark J. H.
    Lazerson, Samuel A.
    Gao, Yu
    Proll, Josefine H. E.
    McNeely, Paul
    Rust, Norbert
    Hartmann, Dirk
    Jakubowski, Marcin W.
    Ali, Adnan
    Pisano, Fabio
    Niemann, Holger
    Sitjes, Aleix Puig
    Koenig, Ralf
    Wolf, Robert C.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2022, 64 (12)
  • [5] Wall conditioning by ECRH discharges and He-GDC in the limiter phase of Wendelstein 7-X
    Wauters, T.
    Brakel, R.
    Brezinsek, S.
    Dinklage, A.
    Goriaev, A.
    Laqua, H. P.
    Marsen, S.
    Moseev, D.
    Stange, T.
    Schlisio, G.
    Pedersen, T. Sunn
    Volzke, O.
    Wenzel, U.
    NUCLEAR FUSION, 2018, 58 (06)
  • [6] Wall conditioning throughout the first carbon divertor campaign on Wendelstein 7-X
    Wauters, Tom
    Goriaev, Andrei
    Alonso, Arturo
    Baldzuhn, Juergen
    Brakel, Rudolf
    Brezinsek, Sebastijan
    Dinklage, Andreas
    Grote, Heinz
    Fellinger, Joris
    Ford, Oliver P.
    Koenig, Ralf
    Laqua, Heinrich
    Matveev, Dmitry
    Stange, Torsten
    Vano, Lilla
    NUCLEAR MATERIALS AND ENERGY, 2018, 17 : 235 - 241
  • [7] Predictive simulations of NBI ion power load to the ICRH antenna in Wendelstein 7-X
    Kontula, J.
    Akaslompolo, S.
    Ikaheimo, A.
    Lazerson, S.
    Kurki-Suonio, T.
    Hartmann, D.
    Rust, N.
    McNeely, P.
    Kazakov, Ye O.
    Ongena, J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (07)
  • [8] Erosion and deposition investigations on Wendelstein 7-X first wall components for the first operation phase in divertor configuration
    Dhard, Chandra Prakash
    Mayer, Matej
    Brezinsek, Sebastijan
    Masuzaki, Suguru
    Motojima, Gen
    Koenig, Ralf
    Pedersen, Thomas Sunn
    Neu, Rudolf
    Hathiramani, Dag
    Krause, Marco
    Ehrke, Gunnar
    Ruset, Cristian
    Schwarz-Selinger, Thomas
    Balden, Martin
    Burwitz, Vassily Vadimovitch
    Coenen, Jan Willem
    Linsmeier, Christian
    Naujoks, Dirk
    Neubauer, Olaf
    Rack, Michael
    Tokitani, Masayuki
    Oelmann, Jannis
    Li, Cong
    Rasinski, Marcin
    Hoeschen, Daniel
    Yajima, Miyuki
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 242 - 245
  • [9] First demonstration of radiative power exhaust with impurity seeding in the island divertor at Wendelstein 7-X
    Effenberg, F.
    Brezinsek, S.
    Feng, Y.
    Koenig, R.
    Krychowiak, M.
    Jakubowski, M.
    Niemann, H.
    Perseo, V
    Schmitz, O.
    Zhang, D.
    Barbui, T.
    Biedermann, C.
    Burhenn, R.
    Buttenschoen, B.
    Kocsis, G.
    Pavone, A.
    Reimold, F.
    Szepesi, T.
    Frerichs, H.
    Gao, Y.
    Hergenhahn, U.
    Kwak, S.
    Otte, M.
    Pedersen, T. Sunn
    NUCLEAR FUSION, 2019, 59 (10)
  • [10] Modelling of NBI shine-through in ITER non-nuclear phase to limit heat fluxes on first wall
    Vincenzi, P.
    Schneider, M.
    Snicker, A.
    FUSION ENGINEERING AND DESIGN, 2024, 200