Development and experimental validation of a computational fluid dynamics-discrete element method sand production model

被引:47
|
作者
Song, Yuqi [1 ]
Ranjith, P. G. [1 ]
Wu, Bailin [2 ]
机构
[1] Monash Univ, Dept Civil Engn, Deep Earth Energy Lab, Melbourne, Vic 3800, Australia
[2] CSIRO Energy, Oil Gas & Fuels Res Program, Melbourne, Vic 3168, Australia
关键词
Computational fluid dynamics; Discrete element method; Oil and gas reservoirs; Particle flow code; Critical drawdown pressure; Sand production; NUMERICAL-SIMULATION; DEM SIMULATION; ONSET; PARTICLES; RESERVOIR; FLOWS; SOILS;
D O I
10.1016/j.jngse.2019.103052
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sand production is a dynamic process that occurs during the production of oil or natural gas, costing the petroleum industry billions of dollars per year to control. The main aim of this research is to develop a numerical model combining the discrete element method with computational fluid dynamics and the using particle flow code to simulate the sand production process, so as to obtain a deeper insight into its mechanisms. The numerical model was validated using sand production data from a specially designed sand production cell. The effects of various variables affecting the sand production process including fluid pressure, sand particle size distribution, and fluid type were investigated. Changing the random number will not influence the macroscopic properties of the sample but affect the microstructure. Selecting the same random number is necessary in each simulation if one wants to keep both the macro and micro properties of samples the same. Running one numerical model with different random numbers can eliminate the haphazard of test. Two main failure modes resulted in sand production: the collapse of thin inner layers of stable sand arches and the thorough collapse of the sand body. When the drawdown pressure was lower than the critical drawdown pressure, the collapse of thin inner layers of stable sand arches prevailed as a failure mode. An unfavourable increase in sand production by thorough collapse of the sand body took place when the drawdown pressure was greater than the critical drawdown pressure. Therefore, determination of the critical drawdown pressure is very important to prevent catastrophic sand production. The closer the drawdown pressure and critical drawdown pressure are, the more difficult it is to form a stable sand arch. The formation of a sand arch was random and haphazard. The proposed numerical model is a promising method for studying the sand production mechanisms.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Computational fluid dynamics-discrete element method simulation of locomotive sanders
    Gautam, Aishwarya
    Green, Sheldon, I
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2021, 235 (01) : 12 - 21
  • [2] Comparison of computational fluid dynamics-discrete element method and discrete element method simulations for a screw conveyor
    Wang, Shuyan
    Ji, Yu
    Wang, Shuqing
    Chen, Yujia
    Tian, Ruichao
    Ma, Yimei
    Sun, Qiji
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2020, 15 (01)
  • [3] Fluidisation of spherocylindrical particles: computational fluid dynamics-Discrete element method simulation and experimental investigation
    Zhou, Ling
    Wang, Bo
    Cao, Yupeng
    Zhao, Zhenjiang
    Agarwal, Ramesh
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2024, 18 (01)
  • [4] Computational fluid dynamics-discrete element method simulation of stirred tank reactor for graphene production
    Zhou, Shuaishuai
    Li, Jing
    Pang, Kaixiang
    Lu, Chunxi
    Zhu, Feng
    Qiao, Congzhen
    Tian, Yajie
    Zhang, Jingwei
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2023, 64 : 196 - 207
  • [5] Computational fluid dynamics-discrete element method simulation of stirred tank reactor for graphene production
    Shuaishuai Zhou
    Jing Li
    Kaixiang Pang
    Chunxi Lu
    Feng Zhu
    Congzhen Qiao
    Yajie Tian
    Jingwei Zhang
    Chinese Journal of Chemical Engineering, 2023, 64 (12) : 196 - 207
  • [6] Study on the Mechanism of Water and Sand Leakage in a Foundation Pit Retaining Structure Based on the Computational Fluid Dynamics-Discrete Element Method
    Xu, Shuo
    Zhang, Xueming
    Wang, Lichuan
    Yue, Changcheng
    Chen, Xiafei
    Luo, Zhiyang
    Zhang, Jingjing
    Fu, Lei
    BUILDINGS, 2024, 14 (03)
  • [7] Computational Fluid Dynamics-Discrete Element Method Studies on Dynamics and Segregation in Spouted Bed with Polydispersed Particles
    Raman, Ritesh
    Mollick, Palash Kumar
    Goswami, Partha S.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (26) : 9474 - 9488
  • [8] Numerical Investigation of the Two-Fluid Model and Computational Fluid Dynamics-Discrete Element Method in Supercritical Methanol Fluidized Beds
    Cai, Wenjian
    Zhang, Qinghong
    Wang, Shuyan
    Lu, Huilin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (40) : 14983 - 14999
  • [9] Theoretical Analysis of Computational Fluid Dynamics-Discrete Element Method Mathematical Model Solution Change With Varying Computational Cell Size
    Volk, Annette
    Ghia, Urmila
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2019, 141 (09):
  • [10] Computational fluid dynamics-discrete element method analysis of the onset of scour around subsea pipelines
    Zhang, Y.
    Zhao, M.
    Kwok, K. C. S.
    Liu, M. M.
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (23-24) : 7611 - 7619