Determining magnetic nanoparticle size distributions from thermomagnetic measurements

被引:28
|
作者
DiPietro, R. S. [1 ]
Johnson, H. G. [1 ]
Bennett, S. P. [2 ]
Nummy, T. J. [1 ]
Lewis, L. H. [3 ]
Heiman, D. [1 ]
机构
[1] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[2] Northeastern Univ, Dept Mech Engn, Boston, MA 02115 USA
[3] Northeastern Univ, Dept Chem Engn, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
antiferromagnetic materials; ferromagnetic materials; internal stresses; magnetic epitaxial layers; terbium compounds; MNAS; DEPENDENCE; SUSCEPTIBILITY; ANISOTROPY; GAAS(001); FILMS; GAAS; (GA;
D O I
10.1063/1.3441411
中图分类号
O59 [应用物理学];
学科分类号
摘要
Thermomagnetic measurements are used to obtain the size distribution and anisotropy of magnetic nanoparticles. An analytical transformation method is described which utilizes temperature-dependent zero-field cooling magnetization data to provide a quantitative measurement of the average diameter and relative abundance of superparamagnetic nanoparticles. Applying this method to self-assembled MnAs nanoparticles in MnAs-GaAs composite films reveals a log-normal size distribution and reduced anisotropy for nanoparticles compared to bulk materials. This analytical technique holds promise for rapid assessment of the size distribution of an ensemble of superparamagnetic nanoparticles. (C) 2010 American Institute of Physics. [doi:10.1063/1.3441411]
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Comment on "Determining magnetic nanoparticle size distributions from thermomagnetic measurements" [Appl. Phys. Lett. 96, 222506 (2010)]
    Tournus, Florent
    Tamion, Alexandre
    APPLIED PHYSICS LETTERS, 2011, 98 (21)
  • [2] Response to "Comment on 'Determining magnetic nanoparticle size distributions from thermomagnetic measurements'" [Appl. Phys. Lett. 98, 216102 (2011)]
    DiPietro, R. S.
    Johnson, H. G.
    Bennett, S. P.
    Nummy, T. J.
    Lewis, L. H.
    Heiman, D.
    APPLIED PHYSICS LETTERS, 2011, 98 (21)
  • [3] Determining chondrule size distributions from thin-section measurements
    Eisenhour, DD
    METEORITICS & PLANETARY SCIENCE, 1996, 31 (02): : 243 - 248
  • [4] Determining particle-size distributions from chord length measurements for different particle morphologies
    Schoell, Jochen
    Irizarry, Roberto
    Sirota, Eric
    Mengel, Cameron
    Codan, Lorenzo
    Cote, Aaron
    AICHE JOURNAL, 2019, 65 (05)
  • [5] Phenomenological analysis of magnetic nanoparticle size distributions with temperature dependent magnetorelaxometry
    Knopke, C.
    Wiekhorst, F.
    Loewa, N.
    Wagner, S.
    Schnorr, J.
    Trahms, L.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2013, 58
  • [6] Estimating nanoparticle size from diffraction measurements
    Hall, BD
    Zanchet, D
    Ugarte, D
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2000, 33 : 1335 - 1341
  • [8] Measurements of nanoparticle number concentrations and size distributions in contrasting aquatic environments using nanoparticle tracking analysis
    Gallego-Urrea, Julian A.
    Tuoriniemi, Jani
    Pallander, Tobias
    Hassellov, Martin
    ENVIRONMENTAL CHEMISTRY, 2010, 7 (01) : 67 - 81
  • [9] Quantitative assessment of nanoparticle size distributions from HRTEM images
    Du, Kui
    Ernst, Frank
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2006, 97 (07) : 928 - 933
  • [10] Nanoparticle size distributions in Mexico city
    Caudillo, L.
    Salcedo, D.
    Peralta, O.
    Castro, T.
    Alvarez-Ospina, H.
    ATMOSPHERIC POLLUTION RESEARCH, 2020, 11 (01) : 78 - 84