Hidden Markov Model-Based Strategy for Gait Segmentation using Inertial Sensors: Application to Elderly, Hemiparetic Patients and Huntington's Disease Patients

被引:0
|
作者
Mannini, Andrea [1 ]
Trojaniello, Diana [2 ]
Della Croce, Ugo [2 ]
Sabatini, Angelo M. [1 ]
机构
[1] Scuola Super Sant Anna, BioRobot Inst, Pisa, Italy
[2] Univ Sassari, POLCOMING Dept, Informat Engn Unit, I-07100 Sassari, Italy
关键词
SPATIOTEMPORAL PARAMETERS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A solution to discriminate stance and swing in both healthy and abnormal gait using inertial sensors is proposed. The method is based on a two states hidden Markov model trained in a supervised way. The proposed method can generalize across different groups of subjects, without the need of parameters tuning. Leave-one-subject-out validation tests showed 20 ms and 16 ms errors on average in the determination of foot strike and toe off events across the three groups of subjects including 10 elderly, 10 hemiparetic patients and 10 Huntington's disease patients. The proposed methodology can be implemented online in portable devices to be used in clinical practice or in everyday personal health assessment.
引用
收藏
页码:5179 / 5182
页数:4
相关论文
共 50 条
  • [1] A Machine Learning Framework for Gait Classification Using Inertial Sensors: Application to Elderly, Post-Stroke and Huntington's Disease Patients
    Mannini, Andrea
    Trojaniello, Diana
    Cereatti, Andrea
    Sabatini, Angelo M.
    [J]. SENSORS, 2016, 16 (01)
  • [2] Hidden Markov Model-based Pedestrian Navigation System using MEMS Inertial Sensors
    Zhang, Yingjun
    Liu, Wen
    Yang, Xuefeng
    Xing, Shengwei
    [J]. MEASUREMENT SCIENCE REVIEW, 2015, 15 (01): : 35 - 43
  • [3] A Hidden Markov Model-Based Technique for Gait Segmentation Using a Foot-Mounted Gyroscope
    Mannini, Andrea
    Sabatini, Angelo Maria
    [J]. 2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 4369 - 4373
  • [4] Hidden Markov Model based stride segmentation on unsupervised free-living gait data in Parkinson’s disease patients
    Nils Roth
    Arne Küderle
    Martin Ullrich
    Till Gladow
    Franz Marxreiter
    Jochen Klucken
    Bjoern M. Eskofier
    Felix Kluge
    [J]. Journal of NeuroEngineering and Rehabilitation, 18
  • [5] Hidden Markov Model based stride segmentation on unsupervised free-living gait data in Parkinson's disease patients
    Roth, Nils
    Kuederle, Arne
    Ullrich, Martin
    Gladow, Till
    Marxreiter, Franz
    Klucken, Jochen
    Eskofier, Bjoern M.
    Kluge, Felix
    [J]. JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2021, 18 (01)
  • [6] Ambulatory Human Gait Phase Detection Using Wearable Inertial Sensors and Hidden Markov Model
    Liu, Long
    Wang, Huihui
    Li, Haorui
    Liu, Jiayi
    Qiu, Sen
    Zhao, Hongyu
    Guo, Xiangyang
    [J]. SENSORS, 2021, 21 (04) : 1 - 24
  • [7] Assessment of Gait in Huntington's disease patients using EncephaLog smartphone's application
    Inbar, N. I.
    Omer, N.
    Bar David, A.
    Geva, N.
    Dabakarov, I.
    Barsky, L.
    Yekutieli, Z.
    Giladi, N.
    Gurevich, T.
    [J]. MOVEMENT DISORDERS, 2019, 34 : S10 - S10
  • [8] Identification of Patients with Sarcopenia Using Gait Parameters Based on Inertial Sensors
    Kim, Jeong-Kyun
    Bae, Myung-Nam
    Lee, Kang Bok
    Hong, Sang Gi
    [J]. SENSORS, 2021, 21 (05) : 1 - 16
  • [9] A hidden Markov model-based stride segmentation technique applied to equine inertial sensor trunk movement data
    Pfau, Thilo
    Ferrari, Marta
    Parsons, Kevin
    Wilson, Alan
    [J]. JOURNAL OF BIOMECHANICS, 2008, 41 (01) : 216 - 220
  • [10] Hidden Markov Model for Parkinson's Disease Patients Using Balance Control Data
    Safi, Khaled
    Aly, Wael Hosny Fouad
    Kanj, Hassan
    Khalifa, Tarek
    Ghedira, Mouna
    Hutin, Emilie
    [J]. BIOENGINEERING-BASEL, 2024, 11 (01):