Linear and nonlinear vibrations analysis of viscoelastic sandwich beams

被引:100
|
作者
Bilasse, M. [2 ]
Daya, E. M. [2 ]
Azrar, L. [1 ]
机构
[1] Univ Abdelmalek Essaadi, Equipe Modelisat Math & Controle, Dept Math, Fac Sci & Tech Tanger, Tanger, Morocco
[2] Univ Paul Verlaine Metz, Lab Phys & Mecan Mat, CNRS, FRE 3236, F-57045 Metz 01, France
关键词
INCREMENTAL FINITE-ELEMENTS; ASYMPTOTIC-NUMERICAL-METHOD; EIGENVALUE PROBLEMS; MULTILAYER BEAMS; HOMOTOPY; SYSTEMS;
D O I
10.1016/j.jsv.2010.06.012
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, numerical models are proposed for linear and nonlinear vibrations analyses of viscoelastic sandwich beams with various viscoelastic frequency dependent laws using the finite element based solution. Real and various complex eigenmodes approaches are investigated as Galerkin bases. Based on harmonic balance method, simplified and general approaches are developed for nonlinear vibration analysis. Analytical frequency-amplitude and phase-amplitude relationships are elaborated based on the numerically computed complex eigenmodes. The equivalent loss factors and frequencies as well as the forced harmonic response and phase curves are performed for sandwich beams with various boundary conditions and frequency dependent viscoelastic laws. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4950 / 4969
页数:20
相关论文
共 50 条
  • [1] Vibrations Analysis of Sandwich Beams with Viscoelastic Core
    Huang, Zhi-Cheng
    Qin, Zhao-Ye
    Chu, Fu-Lei
    [J]. INTERNATIONAL CONFERENCE ON MECHANISM SCIENCE AND CONTROL ENGINEERING (MSCE 2014), 2014, : 357 - 363
  • [2] NONLINEAR VIBRATIONS OF SPATIAL VISCOELASTIC BEAMS
    WOJCIECH, S
    ADAMIEC-WOJCIK, I
    [J]. ACTA MECHANICA, 1993, 98 (1-4) : 15 - 25
  • [3] VIBRATIONS OF UNSYMMETRICAL SANDWICH BEAMS AND PLATES WITH VISCOELASTIC CORES
    SADASIVA, YV
    NAKRA, BC
    [J]. JOURNAL OF SOUND AND VIBRATION, 1974, 34 (03) : 309 - 326
  • [4] Control of complex nonlinear vibrations of sandwich beams
    Krys'ko A.V.
    Zhigalov M.V.
    Saltykova O.A.
    [J]. Russian Aeronautics (Iz VUZ), 2008, 51 (3) : 238 - 243
  • [5] Non-linear vibrations of sandwich viscoelastic shells
    Benchouaf, Lahcen
    Boutyour, El Hassan
    Daya, El Mostafa
    Potier-Ferry, Michel
    [J]. COMPTES RENDUS MECANIQUE, 2018, 346 (04): : 308 - 319
  • [6] Dynamic analysis of viscoelastic sandwich beams
    Cabanska-Placzkiewicz, K
    [J]. INTERNATIONAL APPLIED MECHANICS, 2000, 36 (05) : 673 - 681
  • [7] Asymmetric viscoelastic nonlinear vibrations of imperfect AFG beams
    Ghayesh, Mergen H.
    [J]. APPLIED ACOUSTICS, 2019, 154 : 121 - 128
  • [8] Free vibrations of linear viscoelastic polymer cantilever beams
    Diani, Julie
    [J]. COMPTES RENDUS MECANIQUE, 2020, 348 (10-11): : 797 - 806
  • [9] Modal analysis of rotating viscoelastic sandwich beams
    Boumediene, Faiza
    Bekhoucha, Ferhat
    Daya, El-Mostafa
    [J]. MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2021, 28 (04) : 405 - 417
  • [10] Uncertainty propagation and experimental verification of nonlinear viscoelastic sandwich beams
    Silva, V. A. C.
    de Lima, A. M. G.
    Bouhaddi, N.
    Lacerda, H. B.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 132 : 654 - 669