Rearrangement inequality for the Hardy-Littlewood maximal operator

被引:1
|
作者
Nie, Xudong [1 ]
Yan, Dunyan [2 ]
Liu, Shao [2 ]
Deng, Yangkendi [2 ]
机构
[1] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Hebei, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
Rearrangement inequality; Maximal operator; Best constant; BOUNDS; CUBES;
D O I
10.1007/s43037-022-00197-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A rearrangement inequality for the one-dimensional uncentered Hardy-Littlewood maximal function is obtained. That is, for each x is an element of R, the inequality (Mf)*(x) <= Mf*(x) holds, where f* is the symmetric decreasing rearrangement function of f. The analogical rearrangement inequalities for high-dimensional case is also studied.
引用
收藏
页数:30
相关论文
共 50 条