An Embedding Approach for Context-Aware Collaborative Recommendation and Visualization

被引:0
|
作者
Wu, King Keung [1 ]
Liu, Pengfei [2 ]
Meng, Helen [2 ]
Yam, Yeung [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Recommender system has been widely used in e-commerce systems nowadays. Current methodologies focus on predicting users' preferences from their previous ratings. Although the prediction is largely helpful, it gives limited insight to managers of e-commerce systems on how to utilize the interactions between users and items for designing new business and marketing strategies. Besides, big data collected by e-commerce systems raise another challenge in recommendation - how to incorporate large amount of additional information such as the contexts where the rating or buying event takes place. In this paper, we propose a novel method to simultaneously tackle the two challenges above based on the concept of embedding, by deriving a general distance-dependent rating model that characterizes the relationship between user and item with respective to the embedding space. The generalized model allows us to incorporate contextual information into the recommender system for rating prediction and item recommendation. We show that our embedding model is comparable to state-of-the-art context-aware recommendation algorithms in terms of accuracy, while allowing visualization as an analytics tool which gives intuitive insights to the recommendation in an understandable way. In addition, our algorithm also allows efficient recommendation by leveraging the neighborhood structure of the embedding space. We demonstrate the advantages of our method with experiments and results show that context-aware embedding is a promising approach for context-aware recommender systems.
引用
收藏
页码:3457 / 3462
页数:6
相关论文
共 50 条
  • [1] A Context-aware Collaborative Filtering Approach for Service Recommendation
    Hu, Rong
    Dou, Wanchun
    Liu, Jianxun
    2012 INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICE COMPUTING (CSC), 2012, : 148 - 155
  • [2] Coupled Collaborative Filtering for Context-aware Recommendation
    Jiang, Xinxin
    Liu, Wei
    Cao, Longbing
    Long, Guodong
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 4172 - 4173
  • [3] Hierarchical Collaborative Embedding for Context-Aware Recommendations
    Zheng, Lei
    Cao, Bokai
    Noroozi, Vahid
    Yu, Philip S.
    Ma, Nianzu
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 867 - 876
  • [4] Asymmetrical Context-aware Modulation for Collaborative Filtering Recommendation
    Ouyang, Yi
    Wu, Peng
    Pan, Li
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1595 - 1604
  • [5] An Enhanced Memory-Based Collaborative Filtering Approach for Context-Aware Recommendation
    Tseng, Guan-Yu
    Lee, Wei-Po
    WORLD CONGRESS ON ENGINEERING, WCE 2015, VOL I, 2015, : 198 - 202
  • [6] Pairwise Intent Graph Embedding Learning for Context-Aware Recommendation
    Liu, Dugang
    Wu, Yuhao
    Li, Weixin
    Zhang, Xiaolian
    Wang, Hao
    Yang, Qinjuan
    Ming, Zhong
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 588 - 598
  • [7] Context-Aware Service Recommendation Based on Knowledge Graph Embedding
    Mezni, Haithem
    Benslimane, Djamal
    Bellatreche, Ladjel
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5225 - 5238
  • [8] CAME: Content- and Context-Aware Music Embedding for Recommendation
    Wang, Dongjing
    Zhang, Xin
    Yu, Dongjin
    Xu, Guandong
    Deng, Shuiguang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (03) : 1375 - 1388
  • [9] A Mobile Context-Aware Proactive Recommendation Approach
    Akermi, Imen
    Faiz, Rim
    COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2015), PT I, 2015, 9329 : 400 - 409
  • [10] Context-aware IoT Service Recommendation: A Deep Collaborative Filtering-based Approach
    Wang, Zhen
    Sun, Chang-Ai
    Aiello, Marco
    2022 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2022), 2022, : 150 - 159