Equivalent number of degrees of freedom for neural networks

被引:5
|
作者
Ingrassia, Salvatore [1 ]
Morlin, Isabella [2 ]
机构
[1] Univ Catania, Dipartimento Economia Metodi Quantitativi, Corso Italia 55, I-95128 Catania, Italy
[2] Univ Modena, Dept Social Cognit & Quantat, Reggio Emilia, Italy
来源
关键词
D O I
10.1007/978-3-540-70981-7_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The notion of equivalent number of degrees of freedom (e.d.f.) to be used in neural network modeling from small datasets has been introduced in Ingrassia and Morlini (2005). It is much smaller than the total number of parameters and it does not depend on the number of input variables. We generalize our previous results and discuss the use of the e.d.f. in the general framework of multivariate nonparametric model selection. Through numerical simulations, we also investigate the behavior of model selection criteria like AIC, GCV and BIC/SBC, when the e.d.f. is used instead of the total number of the adaptive parameters in the model.
引用
收藏
页码:229 / +
页数:2
相关论文
共 50 条
  • [1] NUMBER OF DEGREES OF FREEDOM, CORRELATION TIMES, AND EQUIVALENT BANDWIDTHS OF A RANDOM PROCESS
    KIKKAWA, S
    ISHIDA, M
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (01) : 151 - 155
  • [2] COMPUTATIONAL STUDIES WITH EQUIVALENT DEGREES OF FREEDOMS IN NEURAL NETWORKS
    Ingrassia, Salvatore
    Morlini, Isabella
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2009, 13 (01) : 49 - 81
  • [3] NUMBER OF DEGREES OF FREEDOM FOR A THERMOSTAT
    KOLOVSKY, AR
    [J]. PHYSICAL REVIEW E, 1994, 50 (05) : 3569 - 3576
  • [4] Exploiting optical degrees of freedom for information multiplexing in diffractive neural networks
    Chao Zuo
    Qian Chen
    [J]. Light: Science & Applications, 11
  • [5] Exploiting optical degrees of freedom for information multiplexing in diffractive neural networks
    Zuo, Chao
    Chen, Qian
    [J]. Light: Science and Applications, 2022, 11 (01):
  • [6] Exploiting optical degrees of freedom for information multiplexing in diffractive neural networks
    Zuo, Chao
    Chen, Qian
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2022, 11 (01)
  • [7] On the representer theorem and equivalent degrees of freedom of SVR
    Dinuzzo, Francesco
    Neve, Marta
    De Nicolao, Giuseppe
    Gianazza, Ugo Pietro
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 2467 - 2495
  • [8] On the number of degrees of freedom in biological limbs
    Gielen, S
    van Bolhuis, B
    Vrijenhoek, E
    [J]. PROGRESS IN MOTOR CONTROL, VOL 1: BERNSTEINS TRADITIONS IN MOVEMENT STUDIES, 1998, : 173 - 190
  • [9] An alternative to the effective number of degrees of freedom
    Alex Williams
    [J]. Accreditation and Quality Assurance, 1999, 4 : 14 - 17
  • [10] NUMBER OF DEGREES OF FREEDOM IN INVERSE DIFFRACTION
    BERTERO, M
    DEMOL, C
    GORI, F
    RONCHI, L
    [J]. OPTICA ACTA, 1983, 30 (08): : 1051 - 1065