Spectrum of grain boundary segregation energies in a polycrystal

被引:87
|
作者
Wagih, Malik [1 ]
Schuh, Christopher A. [2 ]
机构
[1] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Grain boundary; Segregation; Nanocrystalline; Thermodynamics; Atomistic modeling; VACANCY FORMATION ENERGIES; SOLUTE SEGREGATION; NANOCRYSTALLINE MATERIALS; THERMAL-STABILITY; DISLOCATION LINE; STABILIZATION; GROWTH; EQUILIBRIUM; SIMULATIONS; ALLOYS;
D O I
10.1016/j.actamat.2019.09.034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Solute segregation at grain boundaries (GBs) is emerging as an alloy design tool, uses of which include the stabilization of nanocrystalline alloys. To predict the equilibrium segregation state in a given alloy, most thermodynamic models treat the full network of GBs as a single "entity", and thus use an "effective" segregation energy to describe it. This simplification ignores the spectral nature of available GB segregation energies in a polycrystal, which we elucidate here computationally for a Mg solute in an Al polycrystal; the distribution is found to be captured accurately with a skew-normal function. A thermodynamic segregation isotherm that incorporates this spectrum is outlined and employed to study the effect of such a spectrum on predictions of the equilibrium GB segregation state. The ramifications for experimentally-extracted GB segregation energies are shown to be potentially significant, and nanocrystalline stability criteria are extended to account for this spectral nature of GB segregation. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:228 / 237
页数:10
相关论文
共 50 条
  • [1] ON CALCULATED ENERGIES OF SEGREGATION, GRAIN-BOUNDARY ENERGIES AND LATTICE ENERGY FUNCTIONS
    WETZEL, JT
    MACHLIN, ES
    SCRIPTA METALLURGICA, 1983, 17 (04): : 555 - 558
  • [2] Ab initio modelling of solute segregation energies to a general grain boundary
    Huber, Liam
    Grabowski, Blazej
    Militzer, Matthias
    Neugebauer, Joerg
    Rottler, Jorg
    ACTA MATERIALIA, 2017, 132 : 138 - 148
  • [3] Grain Boundary Segregation of Impurity in Polycrystal under Simultaneous Action of Two Mass Transfer Mechanisms
    Osmayev, O. A.
    Shapovalov, R. V.
    METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2010, 32 (07): : 901 - 913
  • [4] Simulation of polycrystal deformation with grain and grain boundary effects
    Lim, H.
    Lee, M. G.
    Kim, J. H.
    Adams, B. L.
    Wagoner, R. H.
    INTERNATIONAL JOURNAL OF PLASTICITY, 2011, 27 (09) : 1328 - 1354
  • [5] Grain boundary segregation and grain boundary wetting
    Vilenkin, A
    DIFFUSION, SEGREGATION AND STRESSES IN MATERIALS, 2003, 216-2 : 189 - 195
  • [6] GRAIN BOUNDARY SEGREGATION
    INMAN, MC
    TIPLER, HR
    ACTA METALLURGICA, 1959, 7 (03): : 221 - 222
  • [7] Grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal
    Matsui, K
    Ohmichi, N
    Ohgai, M
    Yoshida, H
    Ikuhara, Y
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2006, 114 (1327) : 230 - 237
  • [8] Kinematics of polycrystal deformation by grain boundary sliding
    Weissmueller, Jeorg
    Markmann, Juergen
    Grewer, Manuel
    Birringer, Rainer
    ACTA MATERIALIA, 2011, 59 (11) : 4366 - 4377
  • [9] Hydrogen trapping and diffusion in polycrystalline nickel: The spectrum of grain boundary segregation
    Ding, Yu
    Yu, Haiyang
    Lin, Meichao
    Ortiz, Michael
    Xiao, Senbo
    He, Jianying
    Zhang, Zhiliang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 173 : 225 - 236