Emergent dynamics in excitable flow systems

被引:1
|
作者
Ruiz-Garcia, Miguel [1 ]
Katifori, Eleni [1 ]
机构
[1] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
VISCOUS-FLOW; FLUCTUATIONS; FLUID; TONE;
D O I
10.1103/PhysRevE.103.062301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Flow networks can describe many natural and artificial systems. We present a model for a flow system that allows for volume accumulation, includes conduits with a nonlinear relation between current and pressure difference, and can be applied to networks of arbitrary topology. The model displays complex dynamics, including self-sustained oscillations in the absence of any dynamics in the inputs and outputs. In this work we analytically show the origin of self-sustained oscillations for the one-dimensional case. We numerically study the behavior of systems of arbitrary topology under different conditions: we discuss their excitability, the effect of different boundary conditions, and wave propagation when the network has regions of conduits with linear conductance.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Systems with emergent dynamics
    Stewart, I
    [J]. COMPUTING ANTICIPATORY SYSTEMS, 2002, 627 : 27 - 36
  • [2] Excitable dynamics in neural and cardiac systems
    Barrio, Roberto
    Coombes, Stephen
    Desroches, Mathieu
    Fenton, Flavio
    Luther, Stefan
    Pueyo, Esther
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 86
  • [3] Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium
    Bittihn, Philip
    Berg, Sebastian
    Parlitz, Ulrich
    Luther, Stefan
    [J]. CHAOS, 2017, 27 (09)
  • [4] Stochastic Hierarchical Systems: Excitable Dynamics
    Helmar Leonhardt
    Michael A. Zaks
    Martin Falcke
    Lutz Schimansky-Geier
    [J]. Journal of Biological Physics, 2008, 34 : 521 - 538
  • [5] Hopf bifurcations in dynamics of excitable systems
    De Angelis, Monica
    [J]. RICERCHE DI MATEMATICA, 2022,
  • [6] Stochastic Hierarchical Systems: Excitable Dynamics
    Leonhardt, Helmar
    Zaks, Michael A.
    Falcke, Martin
    Schimansky-Geier, Lutz
    [J]. JOURNAL OF BIOLOGICAL PHYSICS, 2008, 34 (05) : 521 - 538
  • [7] Excitable dynamics and threshold sets in nonlinear systems
    Voslar, M
    Schreiber, I
    [J]. PHYSICAL REVIEW E, 2004, 69 (02): : 026210 - 1
  • [8] Excitable and oscillatory dynamics in an in-homogeneous chain of excitable systems with delayed coupling
    Buric, N
    Grozdanovic, I
    Vasovic, N
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 22 (03) : 731 - 740
  • [9] Dynamics and steady states in excitable mobile agent systems
    Peruani, Fernando
    Sibona, Gustavo J.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (16)
  • [10] DYNAMICS OF DELAY-COUPLED EXCITABLE NEURAL SYSTEMS
    Dahlem, M. A.
    Hiller, G.
    Panchuk, A.
    Schoell, E.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (02): : 745 - 753