Morphing thickness in airfoils using pneumatic flexible tubes and Kirigami honeycomb

被引:7
|
作者
Sun, Jian [1 ,2 ]
Scarpa, Fabrizio [2 ]
Liu, Yanju [3 ]
Leng, Jinsong [1 ]
机构
[1] Harbin Inst Technol, Ctr Composite Mat & Struct, POB 3011,2 YiKuang St, Harbin 150080, Peoples R China
[2] Univ Bristol, ACCIS, Bristol, Avon, England
[3] Harbin Inst Technol, Dept Astronaut Sci & Mech, POB 3011,2 YiKuang St, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
Morphing airfoil; modeling; inflatable structure; honeycomb; Kirigami;
D O I
10.1177/1045389X15580656
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The work describes a concept to morph the thickness of airfoils using a combination of pneumatic flexible tubes within a Kirigami honeycomb configuration that represents the wingbox structure. The configuration of the honeycomb/inflatable tube structure is composed by a pair of flexible tubes sandwiched between two custom honeycomb layouts. At zero input pressure, the tube assumes a sinusoidal shape, which is reduced to a straight configuration and increase of the airfoil thickness when pressure is applied. An analytical model is developed for design purposes to consider the actuation authority and thickness change provided by the system proposed. The results are benchmarked against experimental tests carried out on a reduced-scale demonstrator.
引用
收藏
页码:755 / 763
页数:9
相关论文
共 50 条
  • [1] Flexible Skins for Morphing Aircraft Using Cellular Honeycomb Cores
    Olympio, Kingnide R.
    Gandhi, Farhan
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2010, 21 (17) : 1719 - 1735
  • [2] Morphing airfoils analysis using dynamic meshing
    Abdessemed, Chawki
    Yao, Yufeng
    Bouferrouk, Abdessalem
    Narayan, Pritesh
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2018, 28 (05) : 1117 - 1133
  • [3] Morphing airfoils analysis using dynamic meshing
    Abdessemed C.
    Yao Y.
    Bouferrouk A.
    Narayan P.
    [J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28 (05): : 1117 - 1133
  • [4] Morphing nacelle inlet lip with pneumatic actuators and a flexible nano composite sandwich panel
    Ozdemir, Nazli Gulsine
    Scarpa, Fabrizio
    Craciun, Monica
    Remillat, Chrystel
    Lira, Cristian
    Jagessur, Yogesh
    Da Rocha-Schmidt, Luiz
    [J]. SMART MATERIALS AND STRUCTURES, 2015, 24 (12)
  • [5] Inviscid modeling of unsteady morphing airfoils using a discrete-vortex method
    Martinez-Carmena, Alfonso
    Ramesh, Kiran
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2024, 38 (06) : 845 - 862
  • [6] THE DYNAMIC PROPERTIES OF A NON-PNEUMATIC TIRE WITH FLEXIBLE AUXETIC HONEYCOMB SPOKES
    Lee, Chihun
    Ju, Jaehyung
    Kim, Doo-Man
    [J]. INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 8, 2012, : 605 - 615
  • [7] FLEXIBLE THERMOELECTRIC GENERATOR USING KIRIGAMI-FOLDING STRUCTURE
    Terashima, Shingo
    Iwase, Eiji
    [J]. 2021 21ST INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2021, : 467 - 470
  • [8] A Cortical Thickness Mapping Method for the Coxal Bone Using Morphing
    Giudice, J. Sebastian
    Poulard, David
    Nie, Bingbing
    Wu, Taotao
    Panzer, Matthew B.
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2018, 6
  • [9] A soft rotary actuator with a flexible shaft using flexible pneumatic actuators
    Shimooka, So
    Kawanaka, Miku
    Gofuku, Akio
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2023, 361
  • [10] Modeling flexible/curved PCBs using RBF mesh morphing
    Biancolini, M. E.
    Medikonda, S.
    Morgan, K.
    Porziani, S.
    [J]. 49TH ITALIAN ASSOCIATION FOR STRESS ANALYSIS CONFERENCE (AIAS 2020), 2021, 1038