ASYMPTOTIC ANALYSIS OF A THIN ELASTIC PLATE-VISCOELASTIC LAYER INTERACTION

被引:0
|
作者
Chardard, Frederic [1 ,2 ]
Elbert, Alexander [3 ]
Panasenko, Grigory [1 ,2 ]
机构
[1] Univ Lyon, Inst Camille Jordan, UMR CNRS 5208, F-42023 St Etienne, France
[2] Univ Lyon, SFR MODMAD FED 4169, F-42023 St Etienne, France
[3] Russian Acad Sci, Ural Branch, Inst Mech & Math, Ekaterinburg 620990, Russia
来源
MULTISCALE MODELING & SIMULATION | 2018年 / 16卷 / 03期
基金
俄罗斯科学基金会;
关键词
elasticity; viscoelasticity; thin rigid layer; asymptotic expansion; numerical finite element scheme; KELVIN-VOIGT MODEL;
D O I
10.1137/17M1138662
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to an asymptotic analysis of a problem on interaction between a thin purely elastic plate and a thick viscoelastic layer described by the Kelvin-Voigt model. Such a problem appears in modeling of the earth crust-magma interaction. The small parameter is the ratio of the thicknesses of the elastic part and the viscoelastic one. At the same time the plate has a high Young's modulus, that is, an inverse to the third power of the small parameter. The complete asymptotic expansion of the solution is constructed. The error estimate is proved for the difference of the exact solution and a truncated expansion. The limit problem is the Kelvin-Voigt equations with a special boundary condition. This limit problem is solved numerically by a finite element scheme. The difference between the initial and limit problems is studied theoretically and by numerical computations.
引用
收藏
页码:1258 / 1282
页数:25
相关论文
共 50 条
  • [1] Asymptotic of the Solution of the Contact Problem for a Thin Elastic Plate and a Viscoelastic Layer
    Panasenko, G. P.
    Elbert, A. E.
    [J]. DOKLADY MATHEMATICS, 2018, 97 (02) : 109 - 112
  • [2] Asymptotic of the Solution of the Contact Problem for a Thin Elastic Plate and a Viscoelastic Layer
    G. P. Panasenko
    A. E. Elbert
    [J]. Doklady Mathematics, 2018, 97 : 109 - 112
  • [3] Asymptotic analysis of a thin fluid layer-elastic plate interaction problem
    Curkovic, A.
    Marusic-Paloka, E.
    [J]. APPLICABLE ANALYSIS, 2019, 98 (11) : 2118 - 2143
  • [4] Viscous Fluid–Thin Elastic Plate Interaction: Asymptotic Analysis with Respect to the Rigidity and Density of the Plate
    G. P. Panasenko
    R. Stavre
    [J]. Applied Mathematics & Optimization, 2020, 81 : 141 - 194
  • [5] Viscous fluid-thin cylindrical elastic layer interaction: asymptotic analysis
    Panasenko, G. P.
    Stavre, R.
    [J]. APPLICABLE ANALYSIS, 2014, 93 (10) : 2032 - 2056
  • [6] Asymptotic analysis of a viscous fluid layer separated by a thin stiff stratified elastic plate
    Orlik, Julia
    Panasenko, Grigory
    Stavre, Ruxandra
    [J]. APPLICABLE ANALYSIS, 2021, 100 (03) : 589 - 629
  • [7] Viscous Fluid-Thin Elastic Plate Interaction: Asymptotic Analysis with Respect to the Rigidity and Density of the Plate
    Panasenko, G. P.
    Stavre, R.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (01): : 141 - 194
  • [8] Asymptotic analysis of a thin rigid stratified elastic plate - viscous fluid interaction problem
    Malakhova-Ziablova, Irina
    Panasenko, Grigory
    Stavre, Ruxandra
    [J]. APPLICABLE ANALYSIS, 2016, 95 (07) : 1467 - 1506
  • [9] Asymptotic behavior of an elastic thin layer
    Abdelmoula, R
    Coutris, M
    Marigo, JJ
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1998, 326 (04): : 237 - 242
  • [10] Asymptotic analysis of a thin linearly elastic plate equipped with a periodic distribution of stiffeners
    Licht, Christian
    Weller, Thibaut
    [J]. COMPTES RENDUS MECANIQUE, 2019, 347 (08): : 555 - 560