Growth of the Pt/Cu(111) surface alloy: Self-learning kinetic Monte Carlo simulations

被引:18
|
作者
Dokukin, S. A. [1 ]
Kolesnikov, S. V. [1 ]
Saletsky, A. M. [1 ]
Klavsyuk, A. L. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
关键词
Metals and alloys; Nanostructured materials; Transition metal alloys and compounds; Atomic scale structure; Kinetics; Computer simulations; MOLECULAR-DYNAMICS; NANOSTRUCTURES SYNTHESIS; ELECTRON-GAS; CU; NI; EVOLUTION; AG; POTENTIALS; ENERGY; PD;
D O I
10.1016/j.jallcom.2018.05.335
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper we present new parameters of the TB-SMA interatomic potentials for the Pt/Cu(111) surface alloy. The parameters are fitted using both the experimental and ab initio data. The potentials reproduce not only the bulk properties of copper and platinum, but also the energy characteristics of the Pt/Cu(111) surface alloy. Growth of the Pt/Cu(111) surface alloy at different Pt concentrations, deposition fluxes, and temperatures is investigated on the atomic scale by performing the self-learning kinetic Monte-Carlo simulations. The main atomic processes responsible for the surface alloy formation and the growth of the finger-like protrusions are identified. The results of our simulations are in a good qualitative agreement with the recent experimental data [J. Chem. Phys. C 118, 3015 (2014)] and can be useful for understanding details of the Pt-Cu interactions at the atomic level. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:719 / 727
页数:9
相关论文
共 50 条
  • [1] Dendritic growth of the Pt-Cu islands on Cu(111) surface: Self-learning kinetic Monte Carlo simulations
    Dokukin, S. A.
    Kolesnikov, S., V
    Saletsky, A. M.
    [J]. SURFACE SCIENCE, 2019, 689
  • [2] Self-learning kinetic Monte Carlo method: Application to Cu(111)
    Trushin, O
    Karim, A
    Kara, A
    Rahman, TS
    [J]. PHYSICAL REVIEW B, 2005, 72 (11)
  • [3] Diffusion of small Cu islands on the Ni(111) surface: A self-learning kinetic Monte Carlo study
    Acharya, Shree Ram
    Shah, Syed Islamuddin
    Rahman, Talat S.
    [J]. SURFACE SCIENCE, 2017, 662 : 42 - 58
  • [4] Self-learning kinetic Monte Carlo simulations of self-diffusion of small Ag islands on the Ag(111) surface
    Shah, Syed Islamuddin
    Nandipati, Giridhar
    Karim, Altaf
    Rahman, Talat S.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (02)
  • [5] Self-learning kinetic Monte Carlo simulations of Al diffusion in Mg
    Nandipati, Giridhar
    Govind, Niranjan
    Andersen, Amity
    Rohatgi, Aashish
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (15)
  • [6] Extended pattern recognition scheme for self-learning kinetic Monte Carlo simulations
    Shah, Syed Islamuddin
    Nandipati, Giridhar
    Kara, Abdelkader
    Rahman, Talat S.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (35)
  • [7] Self-diffusion of small Ni clusters on the Ni(111) surface: A self-learning kinetic Monte Carlo study
    Shah, Syed Islamuddin
    Nandipati, Giridhar
    Kara, Abdelkader
    Rahman, Talat S.
    [J]. PHYSICAL REVIEW B, 2013, 88 (03)
  • [8] Kinetic Monte Carlo simulations of the interaction of oxygen with Pt(111)
    Sendner, Christian
    Gross, Axel
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (01):
  • [9] A three-dimensional self-learning kinetic Monte Carlo model: application to Ag(111)
    Latz, Andreas
    Brendel, Lothar
    Wolf, Dietrich E.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (48)
  • [10] Kinetic Monte Carlo Simulations of Electrochemical Oxidation and Reduction of Pt(111)
    Erlebacher, J.
    Kubal, J.
    Zeng, Z.
    Greeley, J.
    Struk, K.
    Steinbach, A. J.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (16) : H888 - H896