Adaptive wavelet analysis and classification of mammographic microcalcification

被引:0
|
作者
Chitre, Y
Dhawan, AP
机构
来源
DIGITAL MAMMOGRAPHY '96 | 1996年 / 1119卷
关键词
D O I
暂无
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
The study of mammographic microcalcifications using wavelets has been shown to provide useful information for the diagnosis of breast cancer. In most analyses of images using wavelets, the samples of the image are assumed to be the scaling function expansion coefficients at a certain ''scale''. For large values of the ''scale'', the approximation works since the scaling function approximates a delta function. In this investigation we adapt our scaling function from a class of possible scaling functions. The approximation error at a certain ''scale'' is minimized using a genetic algorithm. The results indicate a promising procedure for selection of optimal wavelets for the subsequent classification of mammographic microcalcifications.
引用
收藏
页码:323 / 326
页数:4
相关论文
共 50 条
  • [1] Wavelet Based Microcalcification Detection On Mammographic Images
    Shetty, K. Prabhu
    Udupi, V. R.
    Saptalakar, Bairu K.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2009, 9 (07): : 213 - 217
  • [2] Topological Modeling and Classification of Mammographic Microcalcification Clusters
    Chen, Zhili
    Strange, Harry
    Oliver, Arnau
    Denton, Erika R. E.
    Boggis, Caroline
    Zwiggelaar, Reyer
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (04) : 1203 - 1214
  • [3] Classification of Mammographic ROI for Microcalcification Detection Using Multifractal Approach
    Nadia Kermouni Serradj
    Mahammed Messadi
    Sihem Lazzouni
    [J]. Journal of Digital Imaging, 2022, 35 : 1544 - 1559
  • [4] Classification of Mammographic ROI for Microcalcification Detection Using Multifractal Approach
    Kermouni Serradj, Nadia
    Messadi, Mahammed
    Lazzouni, Sihem
    [J]. JOURNAL OF DIGITAL IMAGING, 2022, 35 (06) : 1544 - 1559
  • [5] Classification of Mammographic Microcalcification Clusters With Machine Learning Confidence Levels
    Rampun, Andrik
    Wang, Hui
    Scotney, Bryan
    Morrow, Philip
    Zwiggelaar, Reyer
    [J]. 14TH INTERNATIONAL WORKSHOP ON BREAST IMAGING (IWBI 2018), 2018, 10718
  • [6] Adaptive feature enhancement for mammographic images with wavelet multiresolution analysis
    Chen, LL
    Chen, CW
    Parker, KJ
    [J]. JOURNAL OF ELECTRONIC IMAGING, 1997, 6 (04) : 467 - 478
  • [7] Mammographic images enhancement and denoising for microcalcification detection using dyadic wavelet processing
    Mencattini, A.
    Salmeri, M.
    Lojacono, R.
    Caselli, F.
    [J]. 2006 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, VOLS 1-5, 2006, : 49 - +
  • [8] Analysis of mammographic microcalcification clusters using topological features
    20142917940827
    [J]. (1) Faculty of Information and Control Engineering, Shenyang Jianzhu University, Shenyang, 110168, China; (2) Department of Computer Science, Aberystwyth University, Aberystwyth, SY23 3DB, United Kingdom; (3) Department of Radiology, Norfolk and Norwich University Hospital, Norwich, NR4 7UY, United Kingdom, 1600, (Springer Verlag):
  • [9] Classification of mammographic microcalcification clusters using a combination of topological and location modelling
    Ashiru, Oluwaseun
    Zwiggelaar, Reyer
    [J]. 2016 SIXTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2016,
  • [10] Microcalcification Enhancement and Classification on Mammograms using the Wavelet Transform
    Docusse, Tiago A.
    Furlani, Jullyene R.
    Romano, Rodolfo P.
    Guido, Rodrigo C.
    Chen, Shi-Huang
    Marranghello, Norian
    Pereira, Aledir S.
    [J]. 2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 3181 - +