The variable precision rough set model for data mining in inconsistent information system

被引:0
|
作者
Zhou, QM [1 ]
Yin, CB
Li, YS
机构
[1] Univ Karlsruhe, Inst Comp Applicat Planning & Design, D-76128 Karlsruhe, Germany
[2] Univ Karlsruhe, Inst Prod Dev, D-76128 Karlsruhe, Germany
[3] Nanjing Univ Technol, Coll Informat Sci & Engn, Nanjing 210009, Peoples R China
[4] Nanjing Univ Technol, Coll Mech & Power Engn, Nanjing 210009, Peoples R China
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The variable precision rough set (VPRS) model is an extension of original rough set model. For inconsistent information system, the VPRS model allows a flexible approximation boundary region by a precision variable. This paper is focused on data mining in inconsistent information system using the VPRS model. A method based on VPRS model is proposed to apply to data mining for inconsistent information system. By our method the deterministic and probabilistic classification rules are acquired from the inconsistent information system. An example is given to show that the method of data mining for inconsistent information system is effective.
引用
收藏
页码:285 / 290
页数:6
相关论文
共 50 条
  • [1] A rough set approach to the data mining of inconsistent information system
    Zhou, Qingmin
    Yin, Chenbo
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 3541 - 3545
  • [2] Variable precision rough set model in incomplete information system
    Wang, JY
    Zhou, GC
    [J]. PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 1883 - 1887
  • [3] Risk Rules Mining of Information System Based on Variable Precision Rough Set
    Cheng, Xiaorong
    Geng, Xin
    Zhao, Huilan
    Zhang, Mingquan
    [J]. ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL II, PROCEEDINGS, 2009, : 622 - 625
  • [4] Dynamic variable precision rough set model of mixed information system
    Yang, Zhen
    Qiu, Bao-Zhi
    [J]. Kongzhi yu Juece/Control and Decision, 2020, 35 (02): : 297 - 308
  • [5] VARIABLE PRECISION ROUGH SET MODEL
    ZIARKO, W
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1993, 46 (01) : 39 - 59
  • [6] Meta-information mechanism and Variable Precision Rough Set Model
    Jian Su
    Wenyong Weng
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL SYMPOSIUM ON DATA, PRIVACY, AND E-COMMERCE, 2007, : 155 - +
  • [7] Variable Precision Rough Set Model in Information Tables with Missing Values
    Kusunoki, Yoshifumi
    Inuiguchi, Masahiro
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2011, 15 (01) : 110 - 116
  • [8] The Research of Web Mining Algorithm Based on Variable Precision Rough Set Model
    Zhang, ZhiQiang
    Zhang, SuQing
    [J]. ADVANCES IN FUTURE COMPUTER AND CONTROL SYSTEMS, VOL 1, 2012, 159 : 573 - 578
  • [9] A New Algorithm Based on Variable Precision Rough Set to Deal With Noise Data in Data Mining
    Yang, Yong
    [J]. PROCEEDINGS OF 2010 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND INDUSTRIAL ENGINEERING, VOLS I AND II, 2010, : 1122 - 1125
  • [10] Variable precision Bayesian Rough Set model
    Slezak, D
    Ziarko, W
    [J]. ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, 2003, 2639 : 312 - 315