Novel solutions for a model of wound healing angiogenesis

被引:11
|
作者
Harley, K. [1 ]
van Heijster, P. [1 ]
Marangell, R. [2 ]
Pettet, G. J. [1 ]
Wechselberger, M. [2 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4000, Australia
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
wound healing angiogenesis; travelling wave solutions; advectionreaction-diffusion systems; canards; singularly perturbed systems; CHEMOTACTIC CELLULAR MIGRATION; TRAVELING-WAVE SOLUTIONS; CANARDS; EXISTENCE; SMOOTH;
D O I
10.1088/0951-7715/27/12/2975
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of novel, shock-fronted travelling wave solutions to a model of wound healing angiogenesis studied in Pettet et al (2000 IMA J. Math. App. Med. 17 395-413) assuming two conjectures hold. In the previous work, the authors showed that for certain parameter values, a heteroclinic orbit in the phase plane representing a smooth travelling wave solution exists. However, upon varying one of the parameters, the heteroclinic orbit was destroyed, or rather cut-off, by a wall of singularities in the phase plane. As a result, they concluded that under this parameter regime no travelling wave solutions existed. Using techniques from geometric singular perturbation theory and canard theory, we show that a travelling wave solution actually still exists for this parameter regime. We construct a heteroclinic orbit passing through the wall of singularities via a folded saddle canard point onto a repelling slow manifold. The orbit leaves this manifold via the fast dynamics and lands on the attracting slow manifold, finally connecting to its end state. This new travelling wave is no longer smooth but exhibits a sharp front or shock. Finally, we identify regions in parameter space where we expect that similar solutions exist. Moreover, we discuss the possibility of more exotic solutions.
引用
收藏
页码:2975 / 3003
页数:29
相关论文
共 50 条
  • [1] Regulation of angiogenesis: Wound healing as a model
    Hoffman, Daniel
    Koch, Manuel
    Krieg, Thomas
    Eming, Sabine A.
    [J]. WOUND REPAIR AND REGENERATION, 2007, 15 (06) : A138 - A138
  • [2] Regulation of angiogenesis: Wound healing as a model
    Eming, Sabine A.
    Brachvogel, Bent
    Odorisio, Teresa
    Koch, Manuel
    [J]. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY, 2007, 42 (03) : 115 - 170
  • [3] Angiogenesis in wound healing
    Tonnesen, MG
    Feng, XD
    Clark, RAF
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY SYMPOSIUM PROCEEDINGS, 2000, 5 (01) : 40 - 46
  • [4] A Novel Noncontact Electric Field Therapy Enhances Angiogenesis and Wound Healing in Porcine Model
    Rijal, Nava P.
    Perry, Daniel
    Stumpf, Emma
    Kogan, Andrei
    Narmoneva, Daria A.
    [J]. WOUND REPAIR AND REGENERATION, 2018, 26 (01) : A37 - A37
  • [5] Investigating a simple model of cutaneous wound healing angiogenesis
    Gaffney, EA
    Pugh, K
    Maini, PK
    Arnold, F
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2002, 45 (04) : 337 - 374
  • [6] A model of wound-healing angiogenesis in soft tissue
    Pettet, GJ
    Byrne, HM
    Mcelwain, DLS
    Norbury, J
    [J]. MATHEMATICAL BIOSCIENCES, 1996, 136 (01) : 35 - 63
  • [7] Investigating a simple model of cutaneous wound healing angiogenesis
    E.A. Gaffney
    K. Pugh
    P.K. Maini
    F. Arnold
    [J]. Journal of Mathematical Biology, 2002, 45 : 337 - 374
  • [8] Investigating a simple model of cutaneous wound healing angiogenesis
    E.A. Gaffney
    K. Pugh
    P.K. Maini
    F. Arnold
    [J]. Journal of Mathematical Biology, 2003, 46 : 189 - 189
  • [9] On the role of angiogenesis in wound healing
    Pettet, G
    Chaplain, MAJ
    McElwain, DLS
    Byrne, HM
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1996, 263 (1376) : 1487 - 1493
  • [10] ANGIOGENESIS IN WOUND-HEALING
    ARNOLD, F
    WEST, DC
    [J]. PHARMACOLOGY & THERAPEUTICS, 1991, 52 (03) : 407 - 422