Possibilities of using Neural Networks to Blood Flow Modelling

被引:0
|
作者
Buzakova, Katarina [1 ]
Bachrata, Katarina [1 ]
Bachraty, Hynek [1 ]
Chovanec, Michal [2 ]
机构
[1] Univ Zilina, Fac Management Sci & Informat, Dept Software Technol, Zilina, Slovakia
[2] Tachyum Sro, Bratislava, Slovakia
关键词
Convolutional Neural Networks; Microfluidic Devices; Red Blood Cells Trajectory Prediction;
D O I
10.5220/0010314101400147
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Computer simulation of the flow of blood or other fluid is beneficial to reduce the variety of costs necessary for biological experiments in microfluidics. It turns out, that as biological experiments, even the simulations have limitations. However, data from both types of experiments can be further processed by machine learning methods in order to improve them and thus contribute to the optimization of microfluidic devices. This article describes the possibilities of using neural networks to blood flow modelling. In this paper, we focus mainly on the prediction of red blood cells movement. We propose other possibilities of using neural networks with regard to the needs of further research in simulation modelling.
引用
收藏
页码:140 / 147
页数:8
相关论文
共 50 条
  • [1] The possibilities of modelling the membrane separation processes using artificial neural networks
    Kabsch-Korbutowicz, Malgorzata
    Kutylowska, Malgorzata
    ENVIRONMENT PROTECTION ENGINEERING, 2008, 34 (01): : 15 - 35
  • [2] Possibilities of using neural networks for ECG classification
    Bortolan, G
    Brohet, C
    Fusaro, S
    JOURNAL OF ELECTROCARDIOLOGY, 1996, 29 : 10 - 16
  • [3] Modelling of rheological characteristics of glacier debris flow using artificial neural networks
    Liu Shuliang
    Zhang Jichun
    Arabian Journal of Geosciences, 2022, 15 (1)
  • [4] Modelling and measurement accuracy enhancement of flue gas flow using neural networks
    Kang, H
    Yang, Q
    Butler, C
    WHERE INSTRUMENTATION IS GOING - CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1998, : 930 - 934
  • [5] The modelling of hardenability using neural networks
    Dobrzanski, LA
    Sitek, W
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 1999, 93 : 8 - 14
  • [6] Modelling of halomethanes using neural networks
    Yoshida, H
    Miyashita, Y
    Sasaki, S
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1996, 32 (02) : 193 - 199
  • [7] Dynamic modelling using neural networks
    Schenker, B
    Agarwal, M
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1997, 28 (12) : 1285 - 1298
  • [8] Modelling of hardenability using neural networks
    Dobrzański, L.A.
    Sitek, W.
    Journal of Materials Processing Technology, 1999, 92-93 : 8 - 14
  • [9] Possibilities of a surrogate fire model by using neural networks
    Lazaro, D.
    Puente, E.
    Lazaro, M.
    Capote, J. A.
    Alvear, D.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2013, 29 (03): : 129 - 134
  • [10] Possibilities of using neural networks in diagnostic of the conveyer belts
    Pyka, Dariusz
    Prace Naukowe Instytutu Gornictwa Politechniki Wroclawskiej, (83): : 118 - 124