Parameter specification for fuzzy clustering by Q-learning

被引:1
|
作者
Oh, CH [1 ]
Ikeda, E [1 ]
Honda, K [1 ]
Ichihashi, H [1 ]
机构
[1] Univ Osaka Prefecture, Coll Engn, Dept Ind Engn, Sakai, Osaka 5998531, Japan
关键词
parameter specification; fuzzy clustering; reinforcement learning;
D O I
10.1109/IJCNN.2000.860733
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new method to specify the sequence of parameter values for a fuzzy clustering algorithm by using Q-learning. In the clustering algorithm, we employ similarities between two data points and distances from data to cluster centers as the fuzzy clustering criteria. The fuzzy clustering is achieved by optimizing an objective function which is solved by the Picard iteration. The fuzzy clustering algorithm might be useful but its result depends on the parameter specifications. To conquer the dependency on the parameter values, we use Q-learning to learn the sequential update for the parameters during the iterative optimization procedure of the fuzzy clustering. In the numerical example, we show how the clustering validity improves by the obtained parameter update sequences.
引用
收藏
页码:9 / 12
页数:4
相关论文
共 50 条
  • [1] Dynamic scheduling with fuzzy clustering based Q-learning
    Wang, Guo-Lei
    Lin, Lin
    Zhong, Shi-Sheng
    [J]. Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2009, 15 (04): : 751 - 757
  • [2] Fuzzy Q-learning
    Glorennec, PY
    Jouffe, L
    [J]. PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, 1997, : 659 - 662
  • [3] An Investigation of Methods of Parameter Tuning For Q-Learning Fuzzy Inference System
    Al-Talabi, Ahmad A.
    Schwartz, Howard M.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 2594 - 2601
  • [4] Hierarchical clustering with deep Q-learning
    Forster, Richard
    Fulop, Agnes
    [J]. ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2018, 10 (01) : 86 - 109
  • [5] Fuzzy Q-Learning for generalization of reinforcement learning
    Berenji, HR
    [J]. FUZZ-IEEE '96 - PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 1996, : 2208 - 2214
  • [6] ENHANCEMENTS OF FUZZY Q-LEARNING ALGORITHM
    Glowaty, Grzegorz
    [J]. COMPUTER SCIENCE-AGH, 2005, 7 : 77 - 87
  • [7] Reinforcement distribution in fuzzy Q-learning
    Bonarini, Andrea
    Lazaric, Alessandro
    Montrone, Francesco
    Restelli, Marcello
    [J]. FUZZY SETS AND SYSTEMS, 2009, 160 (10) : 1420 - 1443
  • [8] Fuzzy Q-Learning with an Adaptive Representation
    Waldock, A.
    Carse, B.
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 720 - +
  • [9] Agent learning in simulated soccer by fuzzy Q-learning
    Takahashi, K
    Ueda, H
    Miyahara, T
    [J]. TENCON 2004 - 2004 IEEE REGION 10 CONFERENCE, VOLS A-D, PROCEEDINGS: ANALOG AND DIGITAL TECHNIQUES IN ELECTRICAL ENGINEERING, 2004, : B338 - B341
  • [10] Efficient implementation of dynamic fuzzy Q-learning
    Deng, C
    Er, MJ
    [J]. ICICS-PCM 2003, VOLS 1-3, PROCEEDINGS, 2003, : 1854 - 1858