Metal-organic framework-derived materials for electrochemical energy applications

被引:417
|
作者
Liang, Zibin [1 ]
Zhao, Ruo [1 ]
Qiu, Tianjie [1 ]
Zou, Ruqiang [1 ]
Xu, Qiang [2 ,3 ]
机构
[1] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China
[2] AIST Kyoto Univ Chem Energy Mat Open Innovat Lab, Natl Inst Adv Ind Sci & Technol AIST, Sakyo Ku, Kyoto 6068501, Japan
[3] Yangzhou Univ, Sch Chem & Chem Engn, Yangzhou, Jiangsu, Peoples R China
关键词
Metal-organic frameworks; Derivatives; Energy conversion; Energy storage; Electrocatalysis; DOPED POROUS CARBON; ZEOLITIC IMIDAZOLATE FRAMEWORK; SINGLE-ATOM CATALYSTS; HIGH-SURFACE-AREA; HIGH-PERFORMANCE; OXYGEN REDUCTION; GRAPHENE OXIDE; EFFICIENT OXYGEN; FACILE SYNTHESIS; ANODE MATERIALS;
D O I
10.1016/j.enchem.2019.100001
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As emerging crystalline porous organic-inorganic hybrid materials, metal-organic frameworks (MOFs) have been widely used as sacrificial precursors for the synthesis of carbon materials, metal/metal compounds, and their composites with tunable and controllable nanostructures and chemical compositions for electrochemical energy applications. Herein, recent progress of MOF-derived nanomaterials for various electrochemical energy storage and conversion applications including Li-ion batteries, Li-S batteries, Na-ion batteries, supercapacitors, water splitting, and oxygen reduction reaction is reviewed. Structural and compositional design of MOF-derived nanomaterials is systematically summarized, which may hopefully offer inspirations and guidances for future development of MOF-derived nanomaterials for more efficient and more durable electrochemical energy applications.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Metal-organic framework-derived phosphide nanomaterials for electrochemical applications
    Wang, Xinlan
    Zhang, Guangxun
    Yin, Wei
    Zheng, Shasha
    Kong, Qingquan
    Tian, Jingqi
    Pang, Huan
    [J]. CARBON ENERGY, 2022, 4 (02) : 246 - 281
  • [2] Metal-Organic Framework-Derived Materials for Sodium Energy Storage
    Zou, Guoqiang
    Hou, Hongshuai
    Ge, Peng
    Huang, Zhaodong
    Zhao, Ganggang
    Yin, Dulin
    Ji, Xiaobo
    [J]. SMALL, 2018, 14 (03)
  • [3] Applications of metal-organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage
    Peng, Yi
    Bai, Yang
    Liu, Chunli
    Cao, Shuai
    Kong, Qingquan
    Pang, Huan
    [J]. COORDINATION CHEMISTRY REVIEWS, 2022, 466
  • [4] Metal-organic framework-derived porous materials for catalysis
    Chen, Yu-Zhen
    Zhang, Rui
    Jiao, Long
    Jiang, Hai-Long
    [J]. COORDINATION CHEMISTRY REVIEWS, 2018, 362 : 1 - 23
  • [5] Metal-Organic Framework-Derived Carbons for Battery Applications
    Li, Xiaxia
    Zheng, Shasha
    Jin, Ling
    Li, Yan
    Geng, Pengbiao
    Xue, Huaiguo
    Pang, Huan
    Xu, Qiang
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (23)
  • [6] Applications of metal-organic framework-derived materials in fuel cells and metal-air batteries
    Wen, Xudong
    Zhang, Qiaoqiao
    Guan, Jingqi
    [J]. COORDINATION CHEMISTRY REVIEWS, 2020, 409
  • [7] Perspectives on metal-organic framework-derived microwave absorption materials
    Wang, Meng-Qi
    Cao, Mao-Sheng
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 214 : 37 - 52
  • [8] Metal-organic framework derived hollow materials for electrochemical energy storage
    Xie, Xing-Chen
    Huang, Ke-Jing
    Wu, Xu
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (16) : 6754 - 6771
  • [9] Metal-Organic Framework Derived Bimetallic Materials for Electrochemical Energy Storage
    Sanati, Soheila
    Abazari, Reza
    Albero, Josep
    Morsali, Ali
    Garcia, Hermenegildo
    Liang, Zibin
    Zou, Ruqiang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (20) : 11048 - 11067
  • [10] Multi-Scale Design of Metal-Organic Framework-Derived Materials for Energy Electrocatalysis
    Liang, Zibin
    Qiu, Tianjie
    Gao, Song
    Zhong, Ruiqin
    Zou, Ruqiang
    [J]. ADVANCED ENERGY MATERIALS, 2022, 12 (04)