Investigations of bifurcations of limit cycles in Z2-equivariant planar vector fields of degree 5

被引:32
|
作者
Li, JB [1 ]
Chan, HSY
Chung, KW
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Kunming Univ Sci & Technol, Sch Sci, Kunming 650093, Peoples R China
来源
关键词
limit cycles; perturbed planar Hamiltonian systems; Hilbert's 16th problem; second bifurcation;
D O I
10.1142/S0218127402005698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some distributions of limit cycles of Z(2)-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 are investigated. These include examples of specific Z2-equivariant fields and Z(4)-equivariant fields having up to 23 limit cycles. The configurations of compound eyes are also obtained by using the bifurcation theory of planar dynamical systems and the method of detection functions.
引用
收藏
页码:2137 / 2157
页数:21
相关论文
共 50 条
  • [1] Bifurcations of limit cycles in a Z2-equivariant planar polynomial vector field of degree 7
    Li, JB
    Zhang, MJ
    Li, SM
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (04): : 925 - 943
  • [2] Bifurcation set and number of limit cycles in Z2-equivariant planar vector fields of degree 5
    Li, J.
    Zhang, W.
    Miao, S. F.
    Sun, M.
    Tian, Y.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 4944 - 4952
  • [3] Bifurcation of limit cycles in cubic integrable Z2-equivariant planar vector fields
    Yu P.
    Han M.
    Li J.
    [J]. Qualitative Theory of Dynamical Systems, 2010, 9 (1-2) : 221 - 233
  • [4] Bifurcations of limit cycles in a Z6-equivariant planar vector field of degree 5
    Li, Jibin
    Chan, H.S.Y.
    Chung, K.W.
    [J]. Science in China, Series A: Mathematics, Physics, Astronomy, 2002, 45 (07):
  • [5] Bifurcations of limit cycles in a Z6-equivariant planar vector field of degree 5
    李继彬
    H.S.Y.Chan
    K.W.Chung
    [J]. Science China Mathematics, 2002, (07) : 817 - 826
  • [6] Bifurcations of limit cycles in a Z6-equivariant planar vector field of degree 5
    Jibin Li
    H. S. Y. Chan
    K. W. Chung
    [J]. Science in China Series A: Mathematics, 2002, 45 (7): : 817 - 826
  • [7] Bifurcations of limit cycles in a Z3-equivariant planar vector field of degree 5
    Chan, HSY
    Chung, KW
    Li, JB
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (08): : 2287 - 2298
  • [8] Bifurcations of limit cycles in a Z6-equivariant planar vector field of degree 5
    Li, JB
    Chan, HSY
    Chung, KW
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2002, 45 (07): : 817 - 826
  • [9] Bifurcations of limit cycles in equivariant quintic planar vector fields
    Zhao, Liqin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) : 352 - 375
  • [10] Bifurcations of limit cycles in a Z6-equivariant planar vector field of degree 7
    Shi, Jian-ping
    Li, Ji-bin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 191 - 200