Shifted Chebyshev schemes for solving fractional optimal control problems

被引:30
|
作者
Abdelhakem, M. [1 ,2 ]
Moussa, H. [2 ]
Baleanu, D. [3 ,4 ]
El-Kady, M. [1 ,2 ]
机构
[1] Helwan Univ, Math Dept, Fac Sci, Cairo, Egypt
[2] Canadian Int Coll, New Cairo, Egypt
[3] Cankaya Univ, Dept Math, Etimesgut, Turkey
[4] Inst Space Sci, Magurele, Romania
关键词
Fractional optimal control problems; shifted Chebyshev polynomials; fractional derivative; differentiation and integration matrices Mathematics Subject Classification; OPERATIONAL MATRIX; NUMERICAL-SOLUTION; CALCULUS; ORDER;
D O I
10.1177/1077546319852218
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Two schemes to find approximated solutions of optimal control problems of fractional order (FOCPs) are investigated. Integration and differentiation matrices were used in these schemes. These schemes used Chebyshev polynomials in the shifted case as a functional approximation. The target of the presented schemes is to convert such problems to optimization problems (OPs). Numerical examples are included, showing the strength of the schemes.
引用
收藏
页码:2143 / 2150
页数:8
相关论文
共 50 条
  • [1] Generalized shifted Chebyshev polynomials for fractional optimal control problems
    Hassani, H.
    Tenreiro Machado, J. A.
    Naraghirad, E.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 75 : 50 - 61
  • [2] A Chebyshev pseudospectral method for solving fractional-order optimal control problems
    Dabiri, Arman
    Karimi, Laya
    [J]. 2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 4917 - 4922
  • [3] Solving fractional optimal control problems within a Chebyshev-Legendre operational technique
    Bhrawy, A. H.
    Ezz-Eldien, S. S.
    Doha, E. H.
    Abdelkawy, M. A.
    Baleanu, D.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (06) : 1230 - 1244
  • [4] Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative
    Heydari, M. H.
    Tavakoli, R.
    Razzaghi, M.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2022, 53 (12) : 2694 - 2708
  • [5] Fractional Chebyshev pseudospectral method for fractional optimal control problems
    Habibli, M.
    Skandari, M. H. Noori
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2019, 40 (03): : 558 - 572
  • [6] Solving fractional optimal control problems with inequality constraints by a new kind of Chebyshev wavelets method
    Xu, Xiaoyong
    Xiong, Linchen
    Zhou, Fengying
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 54
  • [7] State Parametrization Method Based on Shifted Legendre Polynomials for Solving Fractional Optimal Control Problems
    Dehghan R.
    [J]. International Journal of Applied and Computational Mathematics, 2018, 4 (1)
  • [8] Numerical Schemes for Fractional Optimal Control Problems
    Alizadeh, Ali
    Effati, Sohrab
    Heydari, Aghileh
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2017, 139 (08):
  • [9] A CHEBYSHEV-APPROXIMATION FOR SOLVING OPTIMAL-CONTROL PROBLEMS
    ELGINDY, TM
    ELHAWARY, HM
    SALIM, MS
    ELKADY, M
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (06) : 35 - 45
  • [10] A SPECTRAL METHOD BASED ON THE SECOND KIND CHEBYSHEV POLYNOMIALS FOR SOLVING A CLASS OF FRACTIONAL OPTIMAL CONTROL PROBLEMS
    Nemati, Somayeh
    [J]. SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2016, 4 (01): : 15 - 27