Undecidable problems for modal definability

被引:4
|
作者
Balbiani, Philippe [1 ]
Tinchev, Tinko [2 ]
机构
[1] Toulouse Univ, Inst Rech Informat Toulouse, 118 Route Narbonne, F-31062 Toulouse 9, France
[2] Sofia Univ, Dept Math Log & Applicat, Blvd James Bouchier 5, BU-1126 Sofia, Bulgaria
关键词
Modal logic; first-order logic; modal definability; Chagrova's Theorem; computability;
D O I
10.1093/logcom/exv094
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The core of our article is the computability of the problem of deciding the modal definability of first-order sentences with respect to classes of frames. It gives a new proof of Chagrova's Theorem telling that, with respect to the class of all frames, the problem of deciding the modal definability of first-order sentences is undecidable. It also gives the proofs of new variants of Chagrova's Theorem.
引用
收藏
页码:901 / 920
页数:20
相关论文
共 50 条
  • [1] Decidable and Undecidable Problems for First-Order Definability and Modal Definability
    Balbiani, Philippe
    Tinchev, Tinko
    [J]. LANGUAGE, LOGIC, AND COMPUTATION, 2022, 13206 : 214 - 236
  • [2] Schwichtenberg-style lambda definability is undecidable
    Malolepszy, J
    Moczurad, M
    Zaionc, M
    [J]. TYPED LAMBDA CALCULI AND APPLICATIONS, 1997, 1210 : 267 - 283
  • [3] DEFINABILITY IN THE EXISTENTIAL THEORY OF CONCATENATION AND UNDECIDABLE EXTENSIONS OF THIS THEORY
    BUCHI, JR
    SENGER, S
    [J]. ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1988, 34 (04): : 337 - 342
  • [4] MODAL SEQUENTS AND DEFINABILITY
    KAPRON, BM
    [J]. JOURNAL OF SYMBOLIC LOGIC, 1987, 52 (03) : 756 - 762
  • [5] Witnessability of Undecidable Problems
    Ding, Shuo
    Zhang, Qirun
    [J]. PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2023, 7 (POPL): : 982 - 1002
  • [6] Modal languages for topology: Expressivity and definability
    ten Cate, Balder
    Gabelaia, David
    Sustretov, Dmitry
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2009, 159 (1-2) : 146 - 170
  • [7] Characterizations of Negative Definability in Modal Logic
    Hollenberg M.
    [J]. Studia Logica, 1998, 60 (3) : 357 - 386
  • [8] Existential definability of modal frame classes
    Perkov, Tin
    Mikec, Luka
    [J]. MATHEMATICAL LOGIC QUARTERLY, 2020, 66 (03) : 316 - 325
  • [9] Modal Expressivity and Definability over Sets
    Shi, Jing
    [J]. LOGIC, RATIONALITY, AND INTERACTION, PROCEEDINGS, 2009, 5834 : 323 - 324
  • [10] Algorithmic Definability and Completeness in Modal Logic
    Vakarelov, Dimiter
    [J]. FOUNDATIONS OF INFORMATION AND KNOWLEDGE SYSTEMS, PROCEEDINGS, 2010, 5956 : 6 - 8