OPTIMAL HARVESTING OF A SPATIALLY DISTRIBUTED RENEWABLE RESOURCE WITH ENDOGENOUS PRICING

被引:5
|
作者
Anita, S. [1 ,2 ]
Behringer, S. [3 ]
Mosneagu, A-M [1 ]
Upmann, T. [4 ,5 ,6 ]
机构
[1] Alexandru Ioan Cuza Univ, Iasi, Romania
[2] Octav Mayer Inst Math, Iasi, Romania
[3] SciencesPo, Paris, France
[4] Carl von Ossietzky Univ Oldenburg, Helmholtz Inst Funct Marine Biodivers, Oldenburg, Germany
[5] Bielefeld Univ, Fac Business Adm & Econ, Bielefeld, Germany
[6] CESifo, Munich, Germany
关键词
Optimal control; optimality conditions; spatial harvesting; renewable resources; iterative algorithms; AGE;
D O I
10.1051/mmnp/2018050
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we focus on the exploitation of a renewable resource in a spatial setting. Building upon the spatial harvesting model of [Behringer and Upmann, J. Econ. Dyn. Control 42 (2014) 105-120], we endogenize the price for the resource assuming that after harvesting the good is non-durable, i.e. the harvesting yield must be supplied on the market instantaneously. We find necessary optimality conditions and use them to derive an iterative algorithm to improve at each step the harvesting effort. We find that with endogenous prices the full exploitation result of [Behringer and Upmann, J. Econ. Dyn. Control 42 (2014) 105-120] may cease to hold.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Optimal Cyclic Harvesting of a Distributed Renewable Resource with Diffusion
    Belyakov, A. O.
    Davydov, A. A.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 315 (01) : 56 - 64
  • [2] Optimal Cyclic Harvesting of a Distributed Renewable Resource with Diffusion
    A. O. Belyakov
    A. A. Davydov
    [J]. Proceedings of the Steklov Institute of Mathematics, 2021, 315 : 56 - 64
  • [3] Optimal stock-enhancement of a spatially distributed renewable resource
    Upmann, Thorsten
    Uecker, Hannes
    Hammann, Liv
    Blasius, Bernd
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2021, 123
  • [4] Optimal Control of Harvesting of a Distributed Renewable Resource on the Earth’s Surface
    Tunitsky, D.V.
    [J]. Automation and Remote Control, 2024, 85 (07) : 604 - 617
  • [5] Optimal cyclic harvesting of renewable resource
    Belyakov, A. O.
    Davydov, A. A.
    Veliov, V. M.
    [J]. DOKLADY MATHEMATICS, 2017, 96 (02) : 472 - 474
  • [6] Optimal harvesting of a spatial renewable resource
    Behringer, Stefan
    Upmann, Thorsten
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2014, 42 : 105 - 120
  • [7] Optimal cyclic harvesting of renewable resource
    A. O. Belyakov
    A. A. Davydov
    V. M. Veliov
    [J]. Doklady Mathematics, 2017, 96 : 472 - 474
  • [8] The structure of optimal solutions for harvesting a renewable resource
    Upmann, Thorsten
    Gromov, Dmitry
    [J]. NATURAL RESOURCE MODELING, 2023, 36 (01)
  • [9] Optimal investment and finance in renewable resource harvesting
    Jorgensen, S
    Kort, PM
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1997, 21 (2-3): : 603 - 630
  • [10] On optimal harvesting of renewable resource from the structured population
    Egorova, A. V.
    Rodina, L. I.
    [J]. VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2019, 29 (04): : 501 - 517