Analyzing magnetic resonance imaging data from glioma patients using deep learning

被引:0
|
作者
Menze, Bjoern [1 ]
Isensee, Fabian [2 ]
Wiest, Roland [3 ]
Wiestler, Bene [4 ]
Maier-Hein, Klaus [2 ]
Reyes, Mauricio [5 ]
Bakas, Spyridon [6 ]
机构
[1] Univ Zurich, Quantitat Biomed, Zurich, Switzerland
[2] DKFZ, Heidelberg, Germany
[3] Inselspital Bern, Inst Diagnost & Intervent Neuroradiol, Support Ctr Adv Neuroimaging, Bern, Switzerland
[4] TUM, Neuroradiol, Munich, Germany
[5] Inselspital Bern, Data Sci Ctr, Bern, Switzerland
[6] Univ Penn, Ctr Biomed Image Comp & Analyt CBICA, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
NeuroOncology; Glioma; Brain tumor; Machine learning; Image segmentation; Image quantification; Deep learning; Brain tumor segmentation challenge; BraTS; CONVOLUTIONAL NEURAL-NETWORKS; BRAIN-TUMOR SEGMENTATION; HIGH-GRADE GLIOMA; EUROPEAN ORGANIZATION; GLIOBLASTOMA; MUTATIONS; SIGNATURE; MODEL; QUALITY; 1P/19Q;
D O I
10.1016/j.compmedimag.2020.101828
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The quantitative analysis of images acquired in the diagnosis and treatment of patients with brain tumors has seen a significant rise in the clinical use of computational tools. The underlying technology to the vast majority of these tools are machine learning methods and, in particular, deep learning algorithms. This review offers clinical background information of key diagnostic biomarkers in the diagnosis of glioma, the most common primary brain tumor. It offers an overview of publicly available resources and datasets for developing new computational tools and image biomarkers, with emphasis on those related to the Multimodal Brain Tumor Segmentation (BraTS) Challenge. We further offer an overview of the state-of-the-art methods in glioma image segmentation, again with an emphasis on publicly available tools and deep learning algorithms that emerged in the context of the BraTS challenge.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Deep Learning Radiomics to Predict PTEN Mutation Status From Magnetic Resonance Imaging in Patients With Glioma
    Chen, Hongyu
    Lin, Fuhua
    Zhang, Jinming
    Lv, Xiaofei
    Zhou, Jian
    Li, Zhi-Cheng
    Chen, Yinsheng
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [2] Noninvasive grading of glioma brain tumors using magnetic resonance imaging and deep learning methods
    Guanghui Song
    Guanbao Xie
    Yan Nie
    Mohammed Sh. Majid
    Iman Yavari
    [J]. Journal of Cancer Research and Clinical Oncology, 2023, 149 : 16293 - 16309
  • [3] Noninvasive grading of glioma brain tumors using magnetic resonance imaging and deep learning methods
    Song, Guanghui
    Xie, Guanbao
    Nie, Yan
    Majid, Mohammed Sh.
    Yavari, Iman
    [J]. JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (18) : 16293 - 16309
  • [4] Glioma grading using structural magnetic resonance imaging and molecular data
    Reza, Syed M. S.
    Samad, Manar D.
    Shboul, Zeina A.
    Jones, Karra A.
    Iftekharuddin, Khan M.
    [J]. JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
  • [5] Improving Quantitative Magnetic Resonance Imaging Using Deep Learning
    Liu, Fang
    [J]. SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2020, 24 (04) : 451 - 459
  • [6] Cardiac Segmentation on Magnetic Resonance Imaging Data with Deep Learning Methods
    Razumov, A. A.
    Tya-Shen-Tin, Y. N.
    Ushenin, K. S.
    [J]. PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019), 2019, 2174
  • [7] Deep Learning Methodology for Differentiating Glioma Recurrence From Radiation Necrosis Using Multimodal Magnetic Resonance Imaging: Algorithm Development and Validation
    Gao, Yang
    Xiao, Xiong
    Han, Bangcheng
    Li, Guilin
    Ning, Xiaolin
    Wang, Defeng
    Cai, Weidong
    Kikinis, Ron
    Berkovsky, Shlomo
    Di Ieva, Antonio
    Zhang, Liwei
    Ji, Nan
    Liu, Sidong
    [J]. JMIR MEDICAL INFORMATICS, 2020, 8 (11)
  • [8] Radiomics-Based Machine Learning to Predict Recurrence in Glioma Patients Using Magnetic Resonance Imaging
    Hu, Guanjie
    Hu, Xinhua
    Yang, Kun
    Yu, Yun
    Jiang, Zijuan
    Liu, Yong
    Liu, Dongming
    Hu, Xiao
    Xiao, Hong
    Zou, Yuanjie
    You, Yongping
    Liu, Hongyi
    Chen, Jiu
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2023, 47 (01) : 129 - 135
  • [9] Differentiation of carcinosarcoma from endometrial carcinoma on magnetic resonance imaging using deep learning
    Saida, Tsukasa
    Mori, Kensaku
    Hoshiai, Sodai
    Sakai, Masafumi
    Urushibara, Aiko
    Ishiguro, Toshitaka
    Satoh, Toyomi
    Nakajima, Takahito
    [J]. POLISH JOURNAL OF RADIOLOGY, 2022, 87 : E521 - E529
  • [10] DETECTION OF CYSTIC GLIOBLASTOMA FROM MAGNETIC RESONANCE IMAGING USING DEEP LEARNING TECHNIQUES
    Ranjbar, Sara
    Curtin, Lee
    Whitmire, Paula
    Hu, Leland
    Swanson, Kristin
    [J]. NEURO-ONCOLOGY, 2019, 21 : 177 - 177