Dialogue Intent Classification with Long Short-Term Memory Networks

被引:6
|
作者
Meng, Lian [1 ]
Huang, Minlie [1 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Tsinghua Natl Lab Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
关键词
D O I
10.1007/978-3-319-73618-1_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dialogue intent analysis plays an important role for dialogue systems. In this paper, we present a deep hierarchical LSTM model to classify the intent of a dialogue utterance. The model is able to recognize and classify user's dialogue intent in an efficient way. Moreover, we introduce a memory module to the hierarchical LSTM model, so that our model can utilize more context information to perform classification. We evaluate the two proposed models on a real-world conversational dataset from a Chinese famous e-commerce service. The experimental results show that our proposed model outperforms the baselines.
引用
收藏
页码:42 / 50
页数:9
相关论文
共 50 条
  • [1] Long Short-Term Memory Neural Networks for Artificial Dialogue Generation
    Selouani, Sid Ahmed
    Yakoub, Mohammed Sidi
    [J]. 2018 IEEE 42ND ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 1, 2018, : 761 - 768
  • [2] Classification of HRV using Long Short-Term Memory Networks
    Leite, Argentina
    Silva, Maria Eduarda
    Rocha, Ana Paula
    [J]. 2020 11TH CONFERENCE OF THE EUROPEAN STUDY GROUP ON CARDIOVASCULAR OSCILLATIONS (ESGCO): COMPUTATION AND MODELLING IN PHYSIOLOGY NEW CHALLENGES AND OPPORTUNITIES, 2020,
  • [3] Zero Shot Intent Classification Using Long-Short Term Memory Networks
    Williams, Kyle
    [J]. INTERSPEECH 2019, 2019, : 844 - 848
  • [4] On the Initialization of Long Short-Term Memory Networks
    Ghazi, Mostafa Mehdipour
    Nielsen, Mads
    Pai, Akshay
    Modat, Marc
    Cardoso, M. Jorge
    Ourselin, Sebastien
    Sorensen, Lauge
    [J]. NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 275 - 286
  • [5] Evolving Long Short-Term Memory Networks
    Neto, Vicente Coelho Lobo
    Passos, Leandro Aparecido
    Papa, Joao Paulo
    [J]. COMPUTATIONAL SCIENCE - ICCS 2020, PT II, 2020, 12138 : 337 - 350
  • [6] Surveillance videos classification based on multilayer long short-term memory networks
    Hong Zhang
    Liang Zhao
    Gang Dai
    [J]. Multimedia Tools and Applications, 2020, 79 : 12125 - 12137
  • [7] Surveillance videos classification based on multilayer long short-term memory networks
    Zhang, Hong
    Zhao, Liang
    Dai, Gang
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (17-18) : 12125 - 12137
  • [8] Classification of Drug Prescribing Information Using Long Short-Term Memory Networks
    Liu, Tianen
    Khuri, Natalia
    [J]. 36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 1086 - 1089
  • [9] Long Short-Term Memory for Bed Position Classification
    Sao, Sakada
    Sornlertlamvanich, Virach
    [J]. PROCEEDINGS OF THE 2019 4TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (INCIT): ENCOMPASSING INTELLIGENT TECHNOLOGY AND INNOVATION TOWARDS THE NEW ERA OF HUMAN LIFE, 2019, : 28 - 31
  • [10] Text Classification Using Long Short-Term Memory
    Sari, Winda Kurnia
    Rini, Dian Palupi
    Malik, Reza Firsandaya
    [J]. 2019 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (ICECOS 2019), 2019, : 150 - 155