Efficient Prediction of Cardiovascular Disease Using Machine Learning Algorithms With Relief and LASSO Feature Selection Techniques

被引:118
|
作者
Ghosh, Pronab [1 ]
Azam, Sami [2 ]
Jonkman, Mirjam [2 ]
Karim, Asif [2 ]
Shamrat, F. M. Javed Mehedi [3 ]
Ignatious, Eva [2 ]
Shultana, Shahana [1 ]
Beeravolu, Abhijith Reddy [2 ]
De Boer, Friso [2 ]
机构
[1] Daffodil Int Univ, Dept Comp Sci & Engn, Dhaka 1225, Bangladesh
[2] Charles Darwin Univ, Coll Engn IT & Environm, Casuarina, NT 0810, Australia
[3] Govt Bangladesh, Minist Posts Telecommun & Informat Technol, Informat & Commun Technol Div, Dhaka 1000, Bangladesh
来源
IEEE ACCESS | 2021年 / 9卷
关键词
Heart; Predictive models; Prediction algorithms; Boosting; Support vector machines; Feature extraction; Classification algorithms; Heart disease; machine learning; CVD; relief feature selection; LASSO feature selection; decision tree; random forest; K-nearest neighbors; AdaBoost; and gradient boosting; HEART-FAILURE; DIAGNOSIS;
D O I
10.1109/ACCESS.2021.3053759
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cardiovascular diseases (CVD) are among the most common serious illnesses affecting human health. CVDs may be prevented or mitigated by early diagnosis, and this may reduce mortality rates. Identifying risk factors using machine learning models is a promising approach. We would like to propose a model that incorporates different methods to achieve effective prediction of heart disease. For our proposed model to be successful, we have used efficient Data Collection, Data Pre-processing and Data Transformation methods to create accurate information for the training model. We have used a combined dataset (Cleveland, Long Beach VA, Switzerland, Hungarian and Stat log). Suitable features are selected by using the Relief, and Least Absolute Shrinkage and Selection Operator (LASSO) techniques. New hybrid classifiers like Decision Tree Bagging Method (DTBM), Random Forest Bagging Method (RFBM), K-Nearest Neighbors Bagging Method (KNNBM), AdaBoost Boosting Method (ABBM), and Gradient Boosting Boosting Method (GBBM) are developed by integrating the traditional classifiers with bagging and boosting methods, which are used in the training process. We have also instrumented some machine learning algorithms to calculate the Accuracy (ACC), Sensitivity (SEN), Error Rate, Precision (PRE) and F1 Score (F1) of our model, along with the Negative Predictive Value (NPR), False Positive Rate (FPR), and False Negative Rate (FNR). The results are shown separately to provide comparisons. Based on the result analysis, we can conclude that our proposed model produced the highest accuracy while using RFBM and Relief feature selection methods (99.05%).
引用
收藏
页码:19304 / 19326
页数:23
相关论文
共 50 条
  • [1] Efficient prediction of cardiovascular disease using machine learning algorithms with relief and lasso feature selection techniques
    Ghosh, Pronab
    Azam, Sami
    Jonkman, Mirjam
    Karim, Asif
    Shamrat, F. M. Javed Mehedi
    Ignatious, Eva
    Shultana, Shahana
    Beeravolu, Abhijith Reddy
    De Boer, Friso
    IEEE Access, 2021, 9 : 19304 - 19326
  • [2] Efficient prediction of coronary artery disease using machine learning algorithms with feature selection techniques
    Hassan, Md. Mehedi
    Zaman, Sadika
    Rahman, Md. Mushfiqur
    Bairagi, Anupam Kumar
    El-Shafai, Walid
    Rathore, Rajkumar Singh
    Gupta, Deepak
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 115
  • [3] Prediction of Cardiovascular Disease by Feature Selection and Machine Learning Techniques
    Ranade, Aditya
    Pise, Nitin
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 2, AITA 2023, 2024, 844 : 457 - 472
  • [4] Efficient Prediction of Seasonal Infectious Diseases Using Hybrid Machine Learning Algorithms with Feature Selection Techniques
    Indhumathi, K.
    Kumar, K. Sathesh
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2023, 32 (07)
  • [5] Efficient Model for Prediction of Parkinson's Disease Using Machine Learning Algorithms with Hybrid Feature Selection Methods
    Singh, Nutan
    Tripathi, Priyanka
    BIOMEDICAL ENGINEERING SCIENCE AND TECHNOLOGY, ICBEST 2023, 2024, 2003 : 186 - 203
  • [6] Efficient Feature Selection for Prediction of Diabetic Using LASSO
    Kumarage, Prabha M.
    Yogarajah, B.
    Ratnarajah, Nagulan
    2019 19TH INTERNATIONAL CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER - 2019), 2019,
  • [7] Prediction of Cardiovascular Disease using Machine Learning Algorithms
    Joshi, Mahesh Kumar
    Dembla, Deepak
    Bhatia, Suman
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 191 - 198
  • [8] Early Prediction of Diabetes Using Feature Selection and Machine Learning Algorithms
    Abdollahi J.
    Aref S.
    SN Computer Science, 5 (2)
  • [9] An Effective Disease Prediction Algorithms Using Machine Learning Techniques
    Sirivanth, Paladugu
    Rao, N. V. Krishna
    Manduva, Jenvith
    Thirupathi, J.
    Kavya, S. P., V
    Tejaswini, M.
    Sruthi, K. Sai
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 502 - 507
  • [10] Advanced Cloud-Based Prediction Models for Cardiovascular Disease: Integrating Machine Learning and Feature Selection Techniques
    Dhiyanesh B.
    Ammal S.G.
    Saranya K.
    Narayana K.E.
    SN Computer Science, 5 (5)