Gradient Estimates on Dirichlet and Neumann Eigenfunctions

被引:5
|
作者
Arnaudon, Marc [1 ]
Thalmaier, Anton [2 ]
Wang, Feng-Yu [3 ,4 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
[2] Univ Luxembourg, Math Res Unit, L-4364 Esch Sur Alzette, Luxembourg
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
[4] Swansea Univ, Dept Math, Singleton Pk, Swansea SA2 8PP, W Glam, Wales
关键词
COMPACT MANIFOLD; EIGENVALUE;
D O I
10.1093/imrn/rny208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By methods of stochastic analysis on Riemannian manifolds, we derive explicit constants c(1) (D) and c(2) (D) for a d-dimensional compact Riemannian manifold D with boundary such that c(1) (D)root parallel to phi parallel to(infinity) <= parallel to del phi parallel to(infinity) <= c(2) (D) root lambda parallel to phi parallel to(infinity) holds for any Dirichlet eigenfunction phi of -Delta with eigenvalue lambda. In particular, when D is convex with nonnegative Ricci curvature, the estimate holds for c(1) (D) = 1/de and c(2) (D) = root e (root 2/root pi + root pi/4 root 2). Corresponding two-sided gradient estimates for Neumann eigenfunctions are derived in the second part of the paper.
引用
收藏
页码:7279 / 7305
页数:27
相关论文
共 50 条