Rheology and Its Relation to Strain-Hardening Properties of Strain-Hardening Cement-Based Composites

被引:1
|
作者
Fares, Galal [1 ,2 ]
Khan, Mohammad Iqbal [3 ,4 ,5 ]
机构
[1] King Saud Univ, Coll Engn, Dept Civil Engn, Riyadh, Saudi Arabia
[2] King Saud Univ, Coll Engn, Ctr Excellence Concrete Res & Testing COE CRT, Microstruct & Mat Labs, Riyadh, Saudi Arabia
[3] King Saud Univ, Dept Civil Engn, Riyadh, Saudi Arabia
[4] King Saud Univ, Ctr Excellence Concrete Res & Testing, Riyadh, Saudi Arabia
[5] Univ Sherbrooke, Dept Civil Engn, Fac Engn, Sherbrooke, PQ, Canada
关键词
polyvinyl alcohol fiber dispersion; theological properties; strain-hardening cement-based composites; strain-hardening properties; BEHAVIOR; SLIP;
D O I
10.14359/51716813
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
An improvement of the theology of strain-hardening cement-based composites (SHCCs) has a maximal influence on the dispersion of microfibers in the cementitious matrix. Efficient fiber dispersion leads to a better SHCC performance with the lowest fiber content. The efficiency of the crack-bridging farce of polyvinyl alcohol (PVA) microfibers for load transfer within the cementitious matrix is affected by SHCC composition, which is a function of the ingredients of the mixture and its theology. The aim of this work was to monitor and evaluate the modification taken place in the rheology of a successful SHCC mixture due to the initial and gradual incorporation of its individual ingredients. A correlation between the optimized theological parameters of successful SHCC mixture and its strain-hardening properties was established. Rheologv of SHCC is an important tool to formulate cost-effective and efficient SHCC mixtures within a defined range of rheological parameters.
引用
下载
收藏
页码:193 / 203
页数:11
相关论文
共 50 条
  • [1] Durability of strain-hardening cement-based composites (SHCC)
    Gideon P. A. G. van Zijl
    Folker H. Wittmann
    Byung H. Oh
    Petr Kabele
    Romildo D. Toledo Filho
    Eduardo M. R. Fairbairn
    Volker Slowik
    Atsuhisa Ogawa
    Hideki Hoshiro
    Viktor Mechtcherine
    Frank Altmann
    Michael D. Lepech
    Materials and Structures, 2012, 45 : 1447 - 1463
  • [2] Durability of strain-hardening cement-based composites (SHCC)
    van Zijl, Gideon P. A. G.
    Wittmann, Folker H.
    Oh, Byung H.
    Kabele, Petr
    Toledo Filho, Romildo D.
    Fairbairn, Eduardo M. R.
    Slowik, Volker
    Ogawa, Atsuhisa
    Hoshiro, Hideki
    Mechtcherine, Viktor
    Altmann, Frank
    Lepech, Michael D.
    MATERIALS AND STRUCTURES, 2012, 45 (10) : 1447 - 1463
  • [3] Development of Strain-Hardening Cement-based Composites for the strengthening of masonry
    Bruedern, A. -E.
    Abecasis, D.
    Mechtcherine, V.
    CONCRETE REPAIR, REHABILITATION AND RETROFITTING II, 2009, : 327 - 328
  • [4] Water permeability of cracked strain-hardening cement-based composites
    Wagner, Christian
    Villmann, Beate
    Slowik, Volker
    Mechtcherine, Viktor
    CEMENT & CONCRETE COMPOSITES, 2017, 82 : 234 - 241
  • [5] Fatigue behaviour of strain-hardening cement-based composites (SHCC)
    Mueller, Steffen
    Mechtcherine, Viktor
    CEMENT AND CONCRETE RESEARCH, 2017, 92 : 75 - 83
  • [6] Use of Strain-Hardening Cement-Based Composites (SHCC) for Retrofitting
    Mueller, Steffen
    Mechtcherine, Viktor
    INTERNATIONAL CONFERENCE ON CONCRETE REPAIR, REHABILITATION AND RETROFITTING (ICCRRR 2018), 2018, 199
  • [7] Capillary absorption of cracked strain-hardening cement-based composites
    Wagner, Christian
    Villmann, Beate
    Slowik, Volker
    Mechtcherine, Viktor
    CEMENT & CONCRETE COMPOSITES, 2019, 97 : 239 - 247
  • [8] Behaviour of Strain-Hardening Cement-Based Composites Under High Strain Rates
    Mechtcherine, Viktor
    Silva, Flavio de Andrade
    Butler, Marko
    Zhu, Deju
    Mobasher, Barzin
    Gao, Shang-Lin
    Maeder, Edith
    JOURNAL OF ADVANCED CONCRETE TECHNOLOGY, 2011, 9 (01) : 51 - 62
  • [10] Durability of mechanically loaded Strain-hardening cement-based composites (SHCC)
    Cao, Weiqun
    Tian, Li
    Zhao, Tiejun
    EMERGING FOCUS ON ADVANCED MATERIALS, PTS 1 AND 2, 2011, 306-307 : 577 - 581