UNSUPERVISED MULTICLASS CHANGE DETECTION FOR MULTIMODAL REMOTE SENSING DATA

被引:0
|
作者
Chirakkal, Sanid [1 ]
Bovolo, Francesca [2 ]
Misra, Arundhati [1 ]
Bruzzone, Lorenzo [3 ]
Bhattacharya, Avik [4 ]
机构
[1] Space Applicat Ctr ISRO, Ahmadabad 380015, Gujarat, India
[2] Fdn Bruno Kessler, I-38123 Trento, Italy
[3] Univ Trento, I-38123 Trento, Italy
[4] Indian Inst Technol, Mumbai 400076, Maharashtra, India
关键词
Multi-modal data; Change Vector Analysis; C(2)VA; Dual-frequency PolSAR;
D O I
10.1109/IGARSS46834.2022.9883211
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We propose an unsupervised methodology for multi-class change detection (CD) in multimodal remote sensing data fused using the Kronecker product formalism. The method utilizes the compressed change vector analysis (C(2)VA) on the fully vectorized change matrices. The multimodal case is demonstrated using dual-frequency full-polarimetric Synthetic Aperture Radar (SAR) data obtained by EMISAR over the Foulum agricultural area. The change types are investigated using ground truth data for the growth of various crops. The work showcases the capability of the Kronecker product-based CD formalism beyond conventional scalar change indices.
引用
收藏
页码:3223 / 3226
页数:4
相关论文
共 50 条
  • [1] Locality Preservation for Unsupervised Multimodal Change Detection in Remote Sensing Imagery
    Sun, Yuli
    Lei, Lin
    Guan, Dongdong
    Kuang, Gangyao
    Li, Zhang
    Liu, Li
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [2] Coupled dictionary learning for unsupervised change detection between multimodal remote sensing images
    Ferraris, Vinicius
    Dobigeon, Nicolas
    Cavalcanti, Yanna
    Oberlin, Thomas
    Chabert, Marie
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 189
  • [3] Code-Aligned Autoencoders for Unsupervised Change Detection in Multimodal Remote Sensing Images
    Luppino, Luigi Tommaso
    Hansen, Mads Adrian
    Kampffmeyer, Michael
    Bianchi, Filippo Maria
    Moser, Gabriele
    Jenssen, Robert
    Anfinsen, Stian Normann
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (01) : 60 - 72
  • [4] A General Framework for Change Detection Using Multimodal Remote Sensing Data
    Chirakkal, Sanid
    Bovolo, Francesca
    Misra, Arundhati
    Bruzzone, Lorenzo
    Bhattacharya, Avik
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10665 - 10680
  • [5] Unsupervised change detection methods for remote sensing images
    Melgani, F
    Moser, G
    Serpico, SB
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING VII, 2002, 4541 : 211 - 222
  • [6] UNSUPERVISED CHANGE DETECTION FOR MULTIMODAL REMOTE SENSING IMAGES VIA COUPLED DICTIONARY LEARNING AND SPARSE CODING
    Ferraris, Vinicius
    Dobigeon, Nicolas
    Cavalcanti, Yanna
    Oberlin, Thomas
    Chabert, Marie
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4627 - 4631
  • [7] Unsupervised change detection in multisource and multisensor remote sensing images
    Bruzzone, L
    Prieto, DF
    [J]. IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 2441 - 2443
  • [8] Histogram thresholding for unsupervised change detection of remote sensing images
    Patra, Swarnajyoti
    Ghosh, Susmita
    Ghosh, Ashish
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (21) : 6071 - 6089
  • [9] On Unsupervised Multiclass Change Detection Using Dual-Polarimetric SAR Data
    Kim, Minhwa
    Lee, Seung-Jae
    Park, Sang-Eun
    [J]. REMOTE SENSING, 2024, 16 (15)
  • [10] Unsupervised change-detection methods for remote-sensing images
    Melgani, F
    Moser, G
    Serpico, SB
    [J]. OPTICAL ENGINEERING, 2002, 41 (12) : 3288 - 3297