Modern State of the Pauli Exclusion Principle and the Problems of Its Theoretical Foundation

被引:3
|
作者
Kaplan, Ilya G. [1 ]
机构
[1] Natl Autonomous Univ Mexico UNAM, Mat Res Inst, Mexico City 04510, DF, Mexico
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 01期
关键词
Pauli exclusion principle; spin-statistics connection; indistinguishability principle; permutation symmetry;
D O I
10.3390/sym13010021
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Pauli exclusion principle (PEP) can be considered from two aspects. First, it asserts that particles that have half-integer spin (fermions) are described by antisymmetric wave functions, and particles that have integer spin (bosons) are described by symmetric wave functions. It is called spin-statistics connection (SSC). The physical reasons why SSC exists are still unknown. On the other hand, PEP is not reduced to SSC and can be consider from another aspect, according to it, the permutation symmetry of the total wave function can be only of two types: symmetric or antisymmetric. They both belong to one-dimensional representations of the permutation group, while other types of permutation symmetry are forbidden. However, the solution of the Schrodinger equation may have any permutation symmetry. We analyze this second aspect of PEP and demonstrate that proofs of PEP in some wide-spread textbooks on quantum mechanics, basing on the indistinguishability principle, are incorrect. The indistinguishability principle is insensitive to the permutation symmetry of wave function. So, it cannot be used as a criterion for the PEP verification. However, as follows from our analysis of possible scenarios, the permission of states with permutation symmetry more general than symmetric and antisymmetric leads to contradictions with the concepts of particle identity and their independence. Thus, the existence in our Nature particles only in symmetric and antisymmetric permutation states is not accidental, since all symmetry options for the total wave function, except the antisymmetric and symmetric, cannot be realized. From this an important conclusion follows, we may not expect that in future some unknown elementary particles that are not fermions or bosons can be discovered.
引用
收藏
页码:1 / 17
页数:16
相关论文
共 50 条
  • [1] The Pauli Exclusion Principle and the Problems of its Theoretical Substantiation1
    Kaplan, I. G.
    [J]. RUSSIAN PHYSICS JOURNAL, 2020, 63 (08) : 1305 - 1321
  • [2] The Pauli Exclusion Principle and the Problems of its Theoretical Substantiation1
    I. G. Kaplan
    [J]. Russian Physics Journal, 2020, 63 : 1305 - 1321
  • [3] The Pauli Exclusion Principle and the Problems of Its Experimental Verification
    Kaplan, Ilya G.
    [J]. SYMMETRY-BASEL, 2020, 12 (02):
  • [4] The Pauli exclusion principle
    Hill, E. L.
    [J]. PHYSICS-A JOURNAL OF GENERAL AND APPLIED PHYSICS, 1932, 2 (01): : 201 - 203
  • [5] PAULI EXCLUSION PRINCIPLE
    Fan, J. D.
    Malozovsky, Yuriy M.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (15):
  • [6] PAULI EXCLUSION PRINCIPLE FOR NUCLEONS
    LOGAN, BA
    LJUBICIC, A
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (01): : 33 - 33
  • [7] PAULI EXCLUSION-PRINCIPLE
    CONCON, AA
    [J]. HOSPITAL PRACTICE, 1985, 20 (06): : 16 - 16
  • [8] Interplay between Pauli exclusion principle and NN final state interaction
    Schepkin, M
    Seluzhenkov, I
    Clement, H
    [J]. I. YA POMERANCHUK AND PHYSICS AT THE TURN OF THE CENTURY, 2003, : 317 - 323
  • [9] Complete state counting for Gentile's generalization of the Pauli exclusion principle
    Hernandez-Perez, R.
    Tun, Dionisio
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 384 (02) : 297 - 304
  • [10] On the reason for Pauli's exclusion principle
    Kennard, EH
    [J]. PHYSICAL REVIEW, 1930, 35 (09): : 1127 - 1127