Enriques involutions on singular K3 surfaces of small discriminants

被引:0
|
作者
Shimada, Ichiro [1 ]
Veniani, Davide Cesare [2 ]
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Math, 1-3-1 Kagamiyama, Higashihiroshima 7398526, Japan
[2] Johannes Gutenberg Univ Mainz, Inst Math FB Phys Math & Informat 08, Staudingerweg 9,4 OG, D-55128 Mainz, Germany
关键词
ELLIPTIC FIBRATIONS; AUTOMORPHISM-GROUPS; NUMBER; COVER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify Enriques involutions on a K3 surface, up to conjugation in the automorphism group, in terms of lattice theory. We enumerate such involutions on singular K3 surfaces with transcendental lattice of discriminant smaller than or equal to 36. For 11 of these K3 surfaces, we apply Borcherds' method to compute the automorphism group of the Enriques surfaces covered by them. In particular, we investigate the structure of the two most algebraic Enriques surfaces.
引用
收藏
页码:1667 / 1701
页数:35
相关论文
共 50 条