Multiple solutions of melting heat transfer of MHD hybrid based nanofluid flow influenced by heat generation/absorption

被引:19
|
作者
Al Nuwairan, Muneerah [1 ]
Hafeez, Abdul [2 ]
Khalid, Asma [3 ]
Aldhafeeri, Anwar [1 ]
机构
[1] King Faisal Univ, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
[2] Quaid I Azam Univ, Dept Math, Islamabad 4400, Pakistan
[3] SBK Womens Univ, Dept Math, Quetta 87300, Pakistan
关键词
Melting heat transfer; Hybrid nanofluid; Heat generation/absorption; Multiple solutions; Stability analysis; BOUNDARY-LAYER-FLOW; STRETCHING SHEET; VELOCITY SLIP; POROUS-MEDIUM; CONVECTION;
D O I
10.1016/j.csite.2022.101988
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents a hybrid based nanofluid flow past over a stretching/shrinking surface. The magnetic field effect is applied normal to the surface. Additionally, the melting heat transfer effect is also taken into considerations. For the performance of heat transport phenomenon, the heat generation/absorption effect is added. The suitable similarity transformations are used to transform the partial differential equations into dimensionless form of ordinary differential equations. For obtaining solutions of the problem, a bvp4c technique is used to handle the transformed differential equations along with boundary conditions. Dual nature study is performed which is the first and second solutions of the problem. In the first solution, increasing the melting temperature improves the rate of heat transfer. Higher values of the shrinking parameter cause an increase in the velocity profile in the first solution and decreases in the second solution. Further, the temperature of the liquid improves as the thermal radiation and heat generation parameters increase, respectively. The temporal stability analysis represents that only one of the two solutions is stable as time evolves. The numerical results are acquired in the form of tabulated data and graphical structures.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] MHD flow of radiative hybrid nanofluid across a wedge influenced by melting heat transfer: Engineering application
    Hafeez, Abdul
    Liu, Dong
    Khalid, Asma
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 122 : 18 - 27
  • [2] DARCY FORCHHEIMER FLOW OF JEFFREY NANOFLUID WITH HEAT GENERATION/ABSORPTION AND MELTING HEAT TRANSFER
    Hayat, Tasawar
    Shah, Faisal
    Hussain, Zakir
    Al-Saedi, Ahmed
    THERMAL SCIENCE, 2019, 23 (06): : 3833 - 3842
  • [3] Hybrid Nanofluid Flow and Heat Transfer Past a Vertical Cylinder in the Presence of MHD and Heat Generation
    Rajesh, V.
    Sowjanya, G. Bala
    Chamkha, Ali
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2022, 13 (05): : 1489 - 1508
  • [4] Numerical study of hybrid nanofluid flow and heat transfer on a stretching sheet with MHD and heat generation effects
    Rajesh, Vemula
    Srilatha, Mandava
    Chamkha, Ali J.
    HEAT TRANSFER, 2022, 51 (04) : 2867 - 2884
  • [5] Heat Transfer in Magnetohydrodynamic Convective Flow of Hybrid Nanofluid Over a Revolving Cone with Heat Generation/Absorption
    Hakeem, A. K. Abdul
    Kirusakthika, S.
    Ganga, B.
    Renuka, P.
    JOURNAL OF NANOFLUIDS, 2023, 12 (08) : 2297 - 2309
  • [6] NUMERICAL SIMULATION OF ENTROPY GENERATION ANALYSIS OF MHD HYBRID-NANOFLUID FLOW WITH NONLINEAR THERMAL RADIATION AND MELTING HEAT TRANSFER
    Kumar, Manjeet
    Kaswan, Pradeep
    Kumari, Manjeet
    SPECIAL TOPICS & REVIEWS IN POROUS MEDIA-AN INTERNATIONAL JOURNAL, 2022, 13 (06) : 1 - 15
  • [7] Heat and mass transfer analysis for the MHD flow of nanofluid with radiation absorption
    Prasad, P. Durga
    Kumar, R. V. M. S. S. Kiran
    Varma, S. V. K.
    AIN SHAMS ENGINEERING JOURNAL, 2018, 9 (04) : 801 - 813
  • [8] Numerical solutions and stability analysis of hybrid Casson nanofluid flow with MHD and heat transfer effects
    Ramesh, Katta
    Lund, Liaquat Ali
    Fadhel, Mustafa Abbas
    Jayavel, Prakash
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (01):
  • [9] MHD heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption
    Reddy, P. Sudarsana
    Chamkha, Ali J.
    Al-Mudhaf, Ali
    ADVANCED POWDER TECHNOLOGY, 2017, 28 (03) : 1008 - 1017
  • [10] ENHANCED HEAT TRANSFER ANALYSIS ON MHD HYBRID NANOFLUID FLOW OVER
    Reddy, R. Chandra Sekhar
    Ramasekhar, Gunisetty
    EAST EUROPEAN JOURNAL OF PHYSICS, 2023, (04): : 286 - 293