A dynamic plug flow reactor model for a vanadium redox flow battery cell

被引:64
|
作者
Li, Yifeng [1 ]
Skyllas-Kazacos, Maria [1 ]
Bao, Jie [1 ]
机构
[1] Univ New S Wales, Sch Chem Engn, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Vanadium redox flow battery; Modelling; Plug flow reactor;
D O I
10.1016/j.jpowsour.2016.02.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:57 / 67
页数:11
相关论文
共 50 条
  • [1] A plug flow reactor model of a vanadium redox flow battery considering the conductive current collectors
    Koenig, S.
    Suriyah, M. R.
    Leibfried, T.
    JOURNAL OF POWER SOURCES, 2017, 360 : 221 - 231
  • [2] Dynamic Model of a Vanadium Redox Flow Battery for System Performance Control
    Yu, Victor
    Chen, Dongmei
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (02):
  • [3] A transient model of vanadium redox flow battery
    Ozgoli, Hassan Ali
    Elyasi, Saeed
    MECHANICS & INDUSTRY, 2016, 17 (04) : 406 - +
  • [4] Zero dimensional dynamic model of vanadium redox flow battery cell incorporating all modes of vanadium ions crossover
    Pugach, M.
    Kondratenko, M.
    Briola, S.
    Bischi, A.
    APPLIED ENERGY, 2018, 226 : 560 - 569
  • [5] Electrical Equivalent Model of Vanadium Redox Flow Battery
    Challapuram, Yaswanth Reddy
    Quintero, Gina Munoz
    Bayne, Stephen B.
    Subburaj, Anitha Sarah
    Harral, Mark A.
    2019 IEEE GREEN TECHNOLOGIES CONFERENCE (GREENTECH), 2019,
  • [6] Studies on dynamic responses and impedance of the vanadium redox flow battery
    Li, Yifeng
    Bao, Jie
    Skyllas-Kazacos, Maria
    Akter, Md Parvez
    Zhang, Xinan
    Fletcher, John
    APPLIED ENERGY, 2019, 237 : 91 - 102
  • [7] A Dynamic Unit Cell Model for the All-Vanadium Flow Battery
    Shah, A.
    Tangirala, R.
    Singh, R.
    Wills, R. G. A.
    Walsh, F. C.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (06) : A671 - A677
  • [8] A dynamic model for plug flow reactor state profiles
    Alopaeus, Ville
    Laavi, Helena
    Aittamaa, Juhani
    COMPUTERS & CHEMICAL ENGINEERING, 2008, 32 (07) : 1494 - 1506
  • [9] Nonlinear model predictive control of vanadium redox flow battery
    Skupin, Piotr
    Ambati, Seshagiri Rao
    JOURNAL OF ENERGY STORAGE, 2023, 62
  • [10] Performance of a vanadium redox flow battery with tubular cell design
    Ressel, Simon
    Laube, Armin
    Fischer, Simon
    Chica, Antonio
    Flower, Thomas
    Struckmann, Thorsten
    JOURNAL OF POWER SOURCES, 2017, 355 : 199 - 205