On the enumeration of bipartite minimum edge colorings

被引:0
|
作者
Matsui, Yasuko [1 ]
Uno, Takeaki [2 ]
机构
[1] Tokai Univ, Fac Sci, Dept Math Sci, 1117,Kitakaname, Hiratsuka, Kanagawa 25912, Japan
[2] Natl Inst Informat, Tokyo 1018430, Japan
关键词
enumeration; generation; listing; edge coloring; bipartite graph; algorithm; complexity; output polynomial;
D O I
10.1007/978-3-7643-7400-6_21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a bipartite graph G = (V., E), an edge coloring of G is a coloring of the edges of G such that, any two adjacent edges are colored in different colors. In this paper, we consider the problem of enumerating all edge colorings with the fewest number of colors. We propose a simple polyuomial delay algorithm whose amortized time complexity is O(vertical bar V vertical bar) per output, whereas the previous fastest algorithm took O(vertical bar E vertical bar log vertical bar V vertical bar) time per output.. Although the delay of the algorithm is O(vertical bar E vertical bar vertical bar V vertical bar), the delay of our algorithm can be reduced to O(vertical bar V vertical bar) by using a simple modification with a queue of polynomial size. We show an improvement to reduce the space complexity from 0(vertical bar V vertical bar vertical bar E vertical bar) to O(vertical bar E vertical bar + vertical bar V vertical bar). Furthermore, we obtain a lower bound (' E vertical bar - vertical bar(V) over cap vertical bar) max {2(Delta-3), 2(vertical bar(V) over cap vertical bar/2 + 1)(Delta-3)/(Delta - 1)}/Delta of the number of edge colorings included in G, where A is the maximum degree and 1 is the set of vertices of the maximum degree.
引用
收藏
页码:271 / +
页数:3
相关论文
共 50 条
  • [1] On interval edge colorings of (α, β)-biregular bipartite graphs
    Asratian, Armen S.
    Casselgren, C. J.
    [J]. DISCRETE MATHEMATICS, 2007, 307 (15) : 1951 - 1956
  • [2] A note on transformations of edge colorings of bipartite graphs
    Asratian, A. S.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (05) : 814 - 818
  • [3] On Interval Edge-Colorings of Bipartite Graphs
    Petrosyan, Petros
    Khachatrian, Hrant
    Mamikonyan, Tigran
    [J]. TENTH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES REVISED SELECTED PAPERS CSIT-2015, 2015, : 71 - 76
  • [4] On star edge colorings of bipartite and subcubic graphs
    Casselgren, Carl Johan
    Granholm, Jonas B.
    Raspaud, Andre
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 298 : 21 - 33
  • [5] Minimum sum edge colorings of multicycles
    Cardinal, Jean
    Ravelomanana, Vlady
    Valencia-Pabon, Mario
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (12) : 1216 - 1223
  • [6] Minimum Number of Palettes in Edge Colorings
    Hornak, Mirko
    Kalinowski, Rafal
    Meszka, Mariusz
    Wozniak, Mariusz
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (03) : 619 - 626
  • [7] Minimum sum edge colorings of multicycles
    Université Libre de Bruxelles , CP 212, Bld. du Triomphe, B-1050 Brussels, Belgium
    不详
    [J]. Discrete Appl Math, 12 (1216-1223):
  • [8] Minimum Number of Palettes in Edge Colorings
    Mirko Horňák
    Rafał Kalinowski
    Mariusz Meszka
    Mariusz Woźniak
    [J]. Graphs and Combinatorics, 2014, 30 : 619 - 626
  • [9] ON THE NUMBER OF EDGE-COLORINGS OF REGULAR BIPARTITE GRAPHS
    SCHRIJVER, A
    [J]. DISCRETE MATHEMATICS, 1982, 38 (2-3) : 297 - 301
  • [10] A Markov chain on the solution space of edge colorings of bipartite graphs
    Hong, Letong
    Miklos, Istvan
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 332 : 7 - 22