Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micro-nanostructures for mechanical and water energy harvesting

被引:108
|
作者
Chen, Xiaoliang [1 ]
Xiong, Jiaqing [2 ]
Parida, Kaushik [2 ,4 ]
Guo, Meiling [3 ]
Wang, Cheng [3 ]
Wang, Chao [1 ]
Li, Xiangming [1 ]
Shao, Jinyou [1 ]
Lee, Pooi See [2 ,4 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Xian Univ Technol, Sch Mech & Precis Instrument Engn, Xian 710048, Shaanxi, Peoples R China
[4] Singapore Hut Alliance Res & Enterprise SHARE, Nanomat Energy & Energy Water Nexus, NEW, CREATE, Singapore 138602, Singapore
基金
中国国家自然科学基金; 新加坡国家研究基金会; 中国博士后科学基金;
关键词
Nanogenerator; Hierarchical structure; Bimodal; Stretchable; Water energy; HYBRIDIZED NANOGENERATOR; WAVE ENERGY; PERFORMANCE; POWER; SENSOR; CONVERSION; SYSTEM;
D O I
10.1016/j.nanoen.2019.103904
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Advances in flexible electronics set new requirements of highly deformable energy generators to power these electronic devices. It is still a challenge to simultaneously achieve high stretchability and strong power generation for most energy generators to adapt the practical flexible applications. Herein, a hierarchical micronanostructure featured with high transparency, full stretchability, and superhydrophobicity is first created to construct high performance bimodal triboelectric nanogenerators (TENGs) for harvesting mechanical energy and water energy. The core SiO2/poly[vinylidenelfuoride-co-trifluoroethylene) P(VDF-TrFE) hierarchical micro-nanostructure is fabricated by a scalable electrospinning technology, and then reliably transferred to a pre-stretched elastomer to achieve robust stretchability and superhydrophobicity. Owing to the significantly increased surface roughness, the triboelectric output of the hierarchical structure is enhanced by 3 times higher than that of the pristine bulk film. The full flexibility characteristic enables the device to work under 300% stretching deformation without degrading performance. Furthermore, the superhydrophobicity and self-cleaning properties provide the TENG additional water energy harvesting ability. Under water flowing rate of 11 mL/s, the output reach approximately to 36V, and 10 mu A. The bifunctional energy harvesting ability, together with good transparency, high stretchability, and robust superhydrophobicity make the TENG a promising sustainable energy source for next-generation electronic devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Triboelectric Nanogenerators for Mechanical Energy Harvesting
    Kaur, Navjot
    Pal, Kaushik
    ENERGY TECHNOLOGY, 2018, 6 (06) : 958 - 997
  • [2] Stretchable Triboelectric Nanogenerators for Energy Harvesting and Motion Monitoring
    He, Jiahui
    Liu, Yiming
    Li, Dengfeng
    Yao, Kuanming
    Gao, Zhan
    Yu, Xinge
    IEEE OPEN JOURNAL OF NANOTECHNOLOGY, 2020, 1 : 109 - 116
  • [3] Triboelectric Nanogenerators for Harvesting Diverse Water Kinetic Energy
    Cui, Xiaojing
    Yu, Cecilia
    Wang, Zhaosu
    Wan, Dong
    Zhang, Hulin
    MICROMACHINES, 2022, 13 (08)
  • [4] Organogel electrode enables highly transparent and stretchable triboelectric nanogenerators of high power density for robust and reliable energy harvesting
    Jing, Titao
    Xu, Bingang
    Yang, Yujue
    Li, Meiqi
    Gao, Yuanyuan
    NANO ENERGY, 2020, 78 (78)
  • [5] Highly Transparent, Stretchable, and Self-Healing Ionic-Skin Triboelectric Nanogenerators for Energy Harvesting and Touch Applications
    Parida, Kaushik
    Kumar, Vipin
    Wang Jiangxin
    Bhavanasi, Venkateswarlu
    Bendi, Ramaraju
    Lee, Pooi See
    ADVANCED MATERIALS, 2017, 29 (37)
  • [6] Wearable triboelectric nanogenerators based on hybridized triboelectric modes for harvesting mechanical energy
    Qiu, Yu
    Yang, Dechao
    Li, Bing
    Shao, Shuai
    Hu, Lizhong
    RSC ADVANCES, 2018, 8 (46) : 26243 - 26250
  • [7] Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators
    Chuncai Shan
    Kaixian Li
    Yuntao Cheng
    Chenguo Hu
    Nano-Micro Letters, 2023, 15 (08) : 388 - 411
  • [8] Triboelectric nanogenerators: Harvesting mechanical energy using polymer films
    Wang, Zhong Lin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [9] Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators
    Shan, Chuncai
    Li, Kaixian
    Cheng, Yuntao
    Hu, Chenguo
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [10] Harvesting Environment Mechanical Energy by Direct Current Triboelectric Nanogenerators
    Chuncai Shan
    Kaixian Li
    Yuntao Cheng
    Chenguo Hu
    Nano-Micro Letters, 2023, 15