Solving time-dependent PDEs using the material point method, a case study from gas dynamics

被引:16
|
作者
Tran, L. T. [1 ]
Kim, J. [1 ]
Berzins, M. [1 ,2 ]
机构
[1] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA
[2] Univ Utah, SCI Inst, Salt Lake City, UT USA
关键词
MPM particle method; error estimates; error analysis; gas dynamics; material point method; time-dependent PDEs; IN-CELL CALCULATIONS; PARTICLE METHOD; SIMULATION; FLIP;
D O I
10.1002/fld.2031
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The material point method (MPM) developed by Sulsky and colleagues is Currently being used to solve many challenging problems involving large deformation and/or fragementations with some Success. In order to understand the properties of this method, ail analysis of the considerable computational properties of MPM is undertaken in the context of model problems from gas dynamics. The MPM method in the form used here is shown both theoretically and computationally to have first-order accuracy for a standard gas dynamics test problem. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:709 / 732
页数:24
相关论文
共 50 条
  • [1] Solving Time-Dependent PDEs with the Ultraspherical Spectral Method
    Lu Cheng
    Kuan Xu
    [J]. Journal of Scientific Computing, 2023, 96
  • [2] Solving Time-Dependent PDEs with the Ultraspherical Spectral Method
    Cheng, Lu
    Xu, Kuan
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [3] An Introduction to the Material Point Method using a Case Study from Gas Dynamics
    Tran, L. T.
    Kim, J.
    Berzins, M.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 26 - +
  • [4] SOLVING THE TIME-DEPENDENT TRANSPORT EQUATION USING TIME-DEPENDENT METHOD OF CHARACTERISTICS AND ROSENBROCK METHOD
    Yang, Xue
    Jevremovic, Tatjana
    [J]. PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING 2010, VOL 2, 2011, : 211 - 216
  • [5] An iterated Radau method for time-dependent PDEs
    Perez-Rodriguez, S.
    Gonzalez-Pinto, S.
    Sommeijer, B. P.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 231 (01) : 49 - 66
  • [6] AN EULERIAN FINITE ELEMENT METHOD FOR PDES IN TIME-DEPENDENT DOMAINS
    Lehrenfeld, Christoph
    Olshanskii, Maxim
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (02): : 585 - 614
  • [7] A Two-Step RKC Method for Time-Dependent PDEs
    Sommeijer, Ben
    Verwer, Jan
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 896 - 899
  • [8] A METHOD FOR SOLVING TIME-DEPENDENT TRANSPORT PROBLEMS
    TAVEL, M
    ZUCKER, M
    [J]. TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1967, 10 (01): : 213 - &
  • [9] Solving Time-dependent Schrodinger Equation Using Gaussian Wave Packet Dynamics
    Lee, Min-Ho
    Byun, Chang Woo
    Choi, Nark Nyul
    Kim, Dae-Soung
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 73 (09) : 1269 - 1278
  • [10] Method for solving the Bloch equation from the connection with time-dependent oscillator
    Kim, HK
    Kim, SP
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 48 (01) : 119 - 124