Supported lipid bilayers microarrays onto a surface and inside microfluidic channels

被引:0
|
作者
Kim, Pilnam [1 ]
Lee, Sang Eun [2 ]
Jung, Ho Sup [2 ]
Lee, Hea Yeon [2 ,3 ]
Kawai, Tomoji [2 ]
Jeong, Hoon Eui [1 ]
Suh, Kahp Y. [1 ]
机构
[1] Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul, South Korea
[2] Osaka Univ, Inst Sci & Ind Res, Suita, Osaka 565, Japan
[3] Japan Sci & Technol Corp, Core Res Evolut Sci & Technol CREST, Tokyo, Japan
关键词
supported lipid bilayers; patterning; microcontact printing; capillary molding; polyethylene glycol microstructures; biotin- streptavidin interactions;
D O I
10.1109/MMB.2006.251517
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present simple soft lithographic methods for patterning supported lipid bilayer (SLB) membranes onto a surface and inside microfluidic channels. Micropatterns of polyethylene glycol (PEG)-based polymers were fabricated on glass substrates by microcontact printing or capillary molding. The patterned PEG surfaces have shown 97 +/- 0.5% reduction in lipid adsorption onto two dimensional surfaces and 95 +/- 1.2% reduction inside microfluidic channels in comparison to glass control. Atomic force microscopy measurements indicated that the deposition of lipid vesicles led to the formation of SLB membranes by vesicle fusion due to hydrophilic interactions with the exposed substrate. Furthermore, the functionality of the patterned SLBs was tested by measuring the binding interactions between biotin (ligand)-labeled lipid bilayer and streptavidin (receptor). SLB arrays were fabricated with spatial resolution down to similar to 500 nm on flat substrate and similar to 1 mu m inside microfluidic channels, respectively.
引用
收藏
页码:162 / +
页数:2
相关论文
共 50 条
  • [1] Soft lithographic patterning of supported lipid bilayers onto a surface and inside microfluidic channels
    Kim, P
    Lee, SE
    Jung, HS
    Lee, HY
    Kawai, T
    Suh, KY
    LAB ON A CHIP, 2006, 6 (01) : 54 - 59
  • [2] Shear-driven motion of supported lipid bilayers in microfluidic channels
    Jönsson, Peter
    Beech, Jason P.
    Tegenfeldt, Jonas O.
    Höök, Fredrik
    Journal of the American Chemical Society, 2009, 131 (14): : 5294 - 5297
  • [3] Shear-Driven Motion of Supported Lipid Bilayers in Microfluidic Channels
    Jonsson, Peter
    Beech, Jason P.
    Tegenfeldt, Jonas O.
    Hook, Fredrik
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (14) : 5294 - 5297
  • [4] IgG binding to solid supported lipid bilayers inside a novel microfluidic device
    Holden, MA
    Cremer, PS
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 168A - 168A
  • [5] Influence of membrane surface charge on adsorption of complement proteins onto supported lipid bilayers
    Yorulmaz, Saziye
    Jackman, Joshua A.
    Hunziker, Walter
    Cho, Nam-Joon
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2016, 148 : 270 - 277
  • [6] Reversible immobilization of proteins onto chelating supported lipid bilayers
    Johnston, LJ
    Cuccia, L
    BIOPHYSICAL JOURNAL, 2001, 80 (01) : 23A - 23A
  • [7] Effect of surface treatment on diffusion in supported lipid bilayers
    Seu, Kalani J.
    Hovis, Jennifer S.
    BIOPHYSICAL JOURNAL, 2007, : 418A - 418A
  • [8] Enhanced Ir absorption of lipid bilayers supported on metallic microarrays of subwavelength holes.
    Rodriguez, KR
    Williams, SM
    Kennedy, S
    Stafford, AD
    Coe, JV
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U324 - U324
  • [9] Enhanced infrared absorption of lipid bilayers supported on metallic microarrays of subwavelength apertures.
    Coe, JV
    Williams, SM
    Rodriguez, KR
    Kennedy, S
    Stafford, AD
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U324 - U324
  • [10] Electrostatic interactions control the adsorption of extracellular vesicles onto supported lipid bilayers
    Ridolfi, Andrea
    Cardellini, Jacopo
    Gashi, Fatlinda
    van Herwijnen, Martijn J. C.
    Trulsson, Martin
    Campos-Teran, Jose
    Wauben, Marca H. M.
    Berti, Debora
    Nylander, Tommy
    Stenhammar, Joakim
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 650 : 883 - 891