On some arithmetic properties of Siegel functions

被引:29
|
作者
Koo, Ja Kyung [1 ]
Shin, Dong Hwa [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 3731, South Korea
关键词
Modular units; Continued fractions; Class fields; FORMULAS;
D O I
10.1007/s00209-008-0456-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with several arithmetic properties of the Siegel functions which are modular units. By modifying the ideas in Kubert and Lang (Modular Units. Grundlehren der mathematischen Wissenschaften, vol 244. Spinger, Heidelberg, 1981), we establish certain criterion for determining a product of Siegel functions to be integral over Z[j]. We also find generators of the function fields K(X-1(N)) by examining the orders of Siegel functions at the cusps and apply them to evaluate the Ramanujan's cubic continued fraction systematically. Furthermore we construct ray class invariants over imaginary quadratic fields in terms of singular values of j and Siegel functions.
引用
收藏
页码:137 / 177
页数:41
相关论文
共 50 条